

NPDES PERMIT RENEWAL APPLICATION

Georgia-Pacific LLC Crossett Paper Operations NPDES Permit #AR0001210

May 4, 2015

May 4, 2015

Arkansas Department of Environmental Quality Permits Branch – Water Division 5301 Northshore Drive North Little Rock, AR 72118-5317

Attn: Ms. Loretta Reiber, P.E.

Subject: Georgia-Pacific LLC NPDES Permit No. AR0001210 AFIN 02-00013 Application for Renewal

Georgia-Pacific LLC Consumer Products

Crossett Paper Operations 100 Mill Supply Rd. P.O. Box 3333 Crossett, AR 71635 (870) 567-8000 (870) 364-9076 fax *www.gp.com*

RECEIVED MAY 04 ZUID LAPO 2:30pm

Ms. Reiber:

Georgia-Pacific LLC (GP) is submitting the renewal application as required for our NPDES Permit No. AR0001210. Additionally, we make the following requests for the permit once drafted:

<u>Chlorophenolics, Chloroform, TCDD and TCDF monitoring (Part I, Section A of current permit:</u>

- The frequency of monitoring for chloroform at Outfalls 101, 102 and 103 in the current permit is once every two months, while the monitoring for chlorophenolics at the same outfall is once every three months. We are requesting a reduction of the chlorophenolics and chloroform sampling frequency to once every six months to coordinate all required sampling on the same schedule. A summary of the data for the last two years is included for chloroform. During this same time period, there have been no detections for any of the chlorophenolics.
- Likewise, we are also requesting a reduction of 2,3,7,8 TCDD and 2,3,7,8 TCDF to once every six months at Outfalls 101, 102 and 103. There have been no detections of 2,3,7,8 TCDD or 2,3,7,8 TCDF during the last permit term.
- We request a permit condition be included in the renewed permit reflecting an option to exercise chloroform certification in lieu of monitoring for chloroform in accordance with 40 CFR 430.02(f). Submittal of the required information in 430.02(f) and approval of the information by ADEQ would replace the monitoring requirements for chloroform.

Dieldrin monitoring (Part I, Section A of current permit):

• Dieldrin limits were included in the last permit based on a single sampling detection data point in the last permit application. During the term of the current permit, we have had no quantifiable detections for dieldrin. GP does not use dieldrin in any raw materials for our process or otherwise at our site. We request the removal of dieldrin permit limits from the future permit.

SMS 002 - 24 hour Composite Samples (Part I, Section A of current permit):

• The sample type for several parameters for SMS 002 is listed as "24 hour composite". We request that this term be clarified to be a "24 hour time composite". Flow proportional sampling at Mossy Lake with a rectangular weir gate is not feasible due to the remoteness of the location and its risk of flooding and submergence of the flow measurement structure.

Mercury Minimization Plan (Part II.20 of current permit):

The Mercury Minimization program with the City of Crossett has been very successful as evidenced by the annual progress reports submitted. We request the developmental requirements for this condition be eliminated in the future permit, and the submittal of annual activity reports be the only retained requirement.

Priority Pollutant Scan

In addition, we did detect bis (2-ethylhexyl) phthalate both at Outfall 001(at a concentration of 25 ug/L) and SMS 002 (at a concentration of 190 ug/L). This is a common lab contaminant and would not be expected to be present in our effluent. We intend to conduct additional sampling and report results to you as soon as possible.

We appreciate the efforts of the ADEQ in processing this permit renewal. Should you have any questions about these comments, please contact Rachel Johnson at (870) 567-8170.

2

Sincerely,

(tuny Kaisas

Gary Kaiser Vice President, Georgia-Pacific LLC 100 Mill Supply Road Crossett, AR 71635

ብ Form 1 2 **Disclosure Statement** E **Priority Pollutant Scan EPA Form 2C** 5 **EPA Form 2F Process Description** 6 and Flow Diagrams **Production Data** 8 Maps

NPDES Permit Renewal Application for Georgia-Pacific LLC Crossett Paper Operations NPDES Permit #AR0001210

May 4, 2015

AVERY[®]

READY INDEX®

Arkansas Department of Environmental Quality NPDES PERMIT APPLICATION FORM 1

INSTRUCTIONS:

- 1. This form should be **typed or printed in ink**. If insufficient space is available to address any item please continue on an attached sheet of paper.
- 2. Please complete the following Section(s). If a Section is not required, please check the Not Applicable (N/A) box at the top of the Section.

Sections	Α	B	C	D	E	F	G	H	Ι
POTW	X	X	X	X					X
Industrial User	X	X	X	X	X	X	X	-	X
Construction Permit Only	X	X	*	X			-	X	X
Modification	X	X	X	X	X	*	*	X	X
All Other Applicants	X	X	X	X	X		1		X

* As necessary

- 3. If you need help on SIC or NAICS go to www.osha.gov/oshstats/sicser.html
- 4. If you have any questions about this form you may call NPDES Section at 501-682-0622 or go to <u>www.adeq.state.ar.us/water</u>. You may also contact :

Department	Information in Regard to	Telephone #
Arkansas Department of Health	Water Supply	501-661-2623

5. The following EPA Forms in addition to Form 1 is required for processing your application:

Form 2A - Municipal Dischargers

- Form 2B Concentrated Animal Feeding Operations
- Form 2C Existing Manufacturing, Commercial, Mining, and Silvicultural Operations
- Form 2D New Sources and New Dischargers Application for Permit to Discharge Process Wastewater
- Form 2E Facilities Which Do Not Discharge Process Wastewater (i.e. Domestic, Non contact cooling water)
- Form 2F Application for Permit to Discharge Storm Water Discharges Associated With Industrial Activity
- 6. Where to Submit

Return the completed form by mail to:

Arkansas Department of Environmental Quality Permits Branch, Water Division 5301 Northshore Drive North Little Rock, AR 72118

Or by email to:

Water.Permit.Application@adeq.state.ar.us

NPDES PERMIT APPLICATION FORM 1

ARKANSAS DEPARTMENT OF ENVIRONMENTAL QUALITY WATER DIVISION 5301 Northshore Drive North Little Rock, AR 72118-5317 www.adeq.state.ar.us/water

PURPOSE OF THIS APPLICATION

\Box	
\boxtimes	

.

SECTION A- GENERAL INFORMATION

1.	egal Applicant Name (who has ultimate decision making responsibility over the operation of a facility or activity)):
	Georgia-Pacific LLC	

	Note: The legal name o	f the applicant must be	identical to the name lis	sted with the Arkansas	Secretary of State.			
2.	Operator Type: Pri State of Incorporation:	vate 🛛 State 🗌	Federal	Partnership 🗌 🕻	Corporation 🗍 O	ther		
3.	Facility Name: Georgia-F	acific LLC, Crossett P	aper Operations					
4.	Is the legal applicant identified in number 1 above, the owner of the facility? Xes No							
5.	NPDES Permit Number (If Applicable): <u>AR0001210</u>							
6.	NPDES General Permit N	lumber (If Applicable)	ARG(Not Applicable)					
7.	NPDES General Storm W	ater Permit Number (I	f Applicable): <u>ARR00A</u>	<u></u>				
8.	Permit Numbers and/or na by the applicant or its par-	ames of any permits iss ent or subsidiary corpo	ued by ADEQ or EPA f ration which are not list	for an activity located ir ed above:	n Arkansas that is p	resently held		
	Permit Name		Peri	<u>mit Number</u>	1	Held by		
	Please see attached list					· · · · · · · · · · · · · · · · · · ·		
9.	Give driving directions to	the wastewater treatme	ent plant with respect to	known landmarks:				
10.	Going west on Highway approximately 2 miles an Facility Physical Location	nd turn right. Proceed a	approximately 1 mile, tu	rn right towards the pri	mary clarifier.	Go		
10.	approximately 2 miles an	nd turn right. Proceed and turn right. Proceed and turn right. (Attach a map with looply Road	approximately 1 mile, tu	rn right towards the pri	mary clarifier.	Go 71635		

Georgia-Pacific Crossett Complex

Operating Permits

Form 1, Section A, Item 8

Permit Name	Permit Number	Held by
Operating Air Permit	597-AOP-R16	Georgia-Pacific LLC
Hazardous Waste	ARD035466648	Georgia-Pacific LLC
Solid Waste Disposal Facility	270-S3N-R2	Georgia-Pacific LLC
Solid Waste Disposal Facility	292-S3N	Georgia-Pacific LLC
General Stormwater Permit	ARROOA776	Georgia-Pacific LLC
Potable Water (AR DOH)	N0028	Georgia-Pacific LLC
Operating Air Permit	736-AOP-R9	Georgia-Pacific LLC (Plywood/Studmill)
Hazardous Waste	ARD980621262	Georgia-Pacific LLC (Plywood/Studmill)
General Storm Water Permit	ARROOA178	Georgia-Pacific LLC (Plywood/Studmill)
Operating Air Permit	1177-AOP-R12	Georgia-Pacific Chemicals LLC
Hazardous Waste	ARD980621239	Georgia-Pacific Chemicals LLC

11. Facility Mailing Address for permit, DMR, and Invoice (Street or Post Office Box):

Name: Sarah M Ross	Title: Environmental Manager
Street: 100 Mill Supply Road	P.O. Box 3333
City: Crossett State:	AR Zip: 71635
E-mail address*: _sarah.ross@gapac.com Fax:	870-364-9076
* Is emailing all documents (permit, letters, DMRs, invoices, etc.) acce	ptable to the applicant? 🛛 Yes 🗌 No
12. Neighboring States Within 20 Miles of the permitted facility (Check all t	that apply):
Oklahoma 🗌 Missouri 🛄 Tennessee 🗌 Louisiana 🔀	Texas 🗌 Mississippi 🗌
13. Indicate applicable Standard Industrial Classification (SIC) Codes and N	AICS codes for primary processes
2621, 2436, 2821, 2439 SIC 322121, 321212, 325211, 321213 NAICS	CS:
14. Design Flow: <u>100</u> MGD Highest Monthly Average of the last two	o years Flow: <u>52.1</u> MGD
15. Is Outfall equipped with a diffuser? \Box Yes \boxtimes No	
16. Responsible Official (as described on the last page of this application):	
Name: Gary W. Kaiser	Title: VP-MFG
Address: 100 Mill Supply Road	Phone Number: (870) 567-8310
E-mail Address: gary.kaiser@gapac.com	
-	
City: Crossett State: AR	Zip:71635
City: Crossett State: AR 17. Cognizant Official (Duly Authorized Representative of responsible official)	
17. Cognizant Official (Duly Authorized Representative of responsible official	al as describe on the last page of this application):
17. Cognizant Official (Duly Authorized Representative of responsible official Name: <u>NA</u>	al as describe on the last page of this application): Title:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Address:	al as describe on the last page of this application):Title:Phone Number:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: <u>NA</u>	al as describe on the last page of this application): Title: Phone Number:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Address: E-mail Address:	al as describe on the last page of this application): Title: Phone Number: Zip:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Address: E-mail Address: City:State:	al as describe on the last page of this application): Title: Phone Number: Zip: Zip: If none, so state):
 17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Address:	al as describe on the last page of this application): Title: Phone Number: Zip: Zip: If none, so state):
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Name: NA Address: E-mail Address: City: State: 18. Name, address and telephone number of active consulting engineer firm (Contact Name: None Company Name: None	al as describe on the last page of this application):Title:Phone Number:Zip:Zip:If none, so state):
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Name: NA Address: E-mail Address: City: State: State: 18. Name, address and telephone number of active consulting engineer firm (Contact Name: None Company Name: None Address:	al as describe on the last page of this application):Title:Phone Number:Zip:If none, so state):Phone Number:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Name: NA Address: E-mail Address: City: State: 18. Name, address and telephone number of active consulting engineer firm (Contact Name: None Company Name: None	al as describe on the last page of this application):Title:Phone Number:Zip:Zip:If none, so state):Phone Number:Phone Number:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Name: NA Address: E-mail Address: City: State: I8. Name, address and telephone number of active consulting engineer firm (Contact Name: None Company Name: Address: E-mail Address: E-mail Address:	al as describe on the last page of this application):Title:Phone Number:Zip:If none, so state):Phone Number:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Address: E-mail Address: City: State: 18. Name, address and telephone number of active consulting engineer firm (Contact Name: None Company Name: None Address: E-mail Address: City: State: Official (Duly Authorized Representative of responsible official Name: None Contact Name: None Address: E-mail Address: City: State: Official (Duly Authorized Representative of responsible of (Duly Authorized Representative of (Duly Authorized Rep	al as describe on the last page of this application):Title:Phone Number:Zip:Zip:If none, so state):Phone Number:Phone Number:
17. Cognizant Official (Duly Authorized Representative of responsible official Name: NA Address: E-mail Address: City: State: 18. Name, address and telephone number of active consulting engineer firm (Contact Name: None Company Name: None Address: E-mail Address: City: State: Official (Duly Authorized Representative of responsible official Name: None Contact Name: None Address: E-mail Address: City: State: Official (Duly Authorized Representative of responsible of (Duly Authorized Representative of (Duly Authorized Rep	al as describe on the last page of this application):

and the second

SECTION B: FACILITY AND OUTFALL INFORMATION
Facility Location (All information must be based on front door (Gate) location of the facility):
Lat: 33 08 30 Long: 91 58 12 County: Ashley Nearest Town: Crossett 2. Outfall Location (The location of the end of the pipe Discharge point.): Outfall No. 001: Outfall No. 001: Outfall No. 001:
Latitude: 33 06 45 Longitude: 92 02 17 " Where is the collection point? within the parshall flume within the parshall flume " Name of Receiving Stream (i.e. an unnamed tributary of Mill Creek, thence into Mill Creek; thence into Arkansas River): Into the upper reaches of Mossy Lake, thence into Coffee Creek, thence into the Ouachita River
Outfall No. SMS 002:
Latitude: 33 02 00 " Longitude: 92 04 24 " Where is the collection point? within the weir discharge structure Name of Receiving Stream (i.e. an unnamed tributary of Mill Creek, thence into Mill Creek; thence into Arkansas River): Coffee Creek to the Ouachita River (Note: this is classified as a Stream Monitoring Station)
3. Monitoring Location (If the monitoring is conducted at a location different than the above Outfall location): Outfall No. <u>101</u> :
Lat: <u>33</u> ° <u>08</u> ' <u>29</u> " Long: <u>91</u> ° <u>58</u> ' <u>28</u> " Outfall No. <u>102</u> :
Lat: <u>33</u> ° <u>08</u> ' <u>29</u> " Long: <u>91</u> ° <u>58</u> ' <u>28</u> " Outfall No. <u>103</u> :
Lat: <u>33</u> ° <u>08</u> ' <u>29</u> " Long: <u>91</u> ° <u>58</u> ' <u>28</u> " 4. Type of Treatment system (Included all components of treatment system and Attach the process flow diagram):
Primary treatment by clarifier and settling basins. Equalization by a surge basin. Chemical additions for odor control and nutrients. Biological treatment by an aerated stabilization basin (ASB) and Polishing Pond (Mossy Lake).

	Current:	Flow Meterin Sampling Equip			Type: <u>Cont</u> Type: <u>A</u> 1		□	No	□ No	N/A	□ N/A	
	Planned:	Flow Meterin Sampling Equip	-	Yes	Туре: Туре:			No No		N/A N/A	\boxtimes	
If	YES, please	indicate the pres	ent or fut	ure locatio	on of this equi	ipment on the	sewer se	chematic	and descr	ibe the eq	uipment	below
т	The automati	c sampling equip	ment and	continuou	is flow meter	ing equipment	t are loc:	ated at O	itfalls 001	and SMS	5 002	
		o sumpring oquip	inone una	vontinuot		ing equipment					5 002.	
If	NO place	describe the meth	od and la	nation of f		mont holouu						
If	NO, please o	describe the meth	od and lo	ocation of f	low measure	ment below:						
If	NO, please o	describe the meth	od and lo	ocation of f	low measure	ment below:						
If]	NO, please o	describe the meth	od and lo	ocation of f	low measure	ment below:		<u></u>		·		
If]	NO, please o	describe the meth	od and lo	ocation of f	low measure	ment below:		<u>, , , , , , , , , , , , , , , , , , , </u>				
If] 		describe the meth					? 🗌	Yes		 	No	
		posed or existing	facility lo	ocated abov	ve the 100-ye	ar flood level?	—		lered at w	—		
	Is the prop	bosed or existing <u>NOTE</u> : FEM	facility lo A Map m	ocated above nust be incl	ve the 100-ye uded with thi	ar flood level	— Maps c	an be orc		ww.fema.	. <u>gov</u> .	
	Is the prop	oosed or existing <u>NOTE</u> : FEM o", what measures	facility lo A Map m are (or v	ocated above nust be incl will be) use	ve the 100-ye uded with thi ed to protect t	ar flood level? is application. he facility? <u>St</u>	Maps c	an be orc	nediate pr	ww.fema.	<u>.gov</u> . areas is r	outed
	Is the prop	bosed or existing <u>NOTE</u> : FEM	facility lo A Map m are (or v	ocated above nust be incl will be) use	ve the 100-ye uded with thi ed to protect t	ar flood level? is application. he facility? <u>St</u>	Maps c	an be orc	nediate pr	ww.fema.	<u>.gov</u> . areas is r	outed
	Is the prop If "No <u>the W</u>	oosed or existing <u>NOTE</u> : FEM o", what measures	facility lo A Map m are (or v er in outly	becated above bust be incl will be) use wing areas	ve the 100-ye uded with thi ed to protect t is routed to se	ar flood level? is application. he facility? <u>St</u> eparate storm	Maps c	an be orc	nediate pr	ww.fema.	<u>.gov</u> . areas is r	outed
6.	Is the prop If "No <u>the W</u> Population	bosed or existing <u>NOTE</u> : FEM 0", what measures WTP, storm wate h for Municipal an	facility lo A Map m are (or v or in outly ad Domes	ocated above nust be incle will be) use ving areas stic Sewer	ve the 100-ye uded with thi ad to protect t is routed to se Systems: <u>NA</u>	ar flood level? is application. he facility? <u>St</u> eparate storm	Maps c	an be orc	nediate pr	ww.fema.	<u>.gov</u> . areas is r	outed
	Is the prop If "No <u>the W</u> Population	bosed or existing <u>NOTE</u> : FEM o", what measures WTP, storm wate	facility lo A Map m are (or v or in outly ad Domes	ocated above nust be incle will be) use ving areas stic Sewer	ve the 100-ye uded with thi ad to protect t is routed to se Systems: <u>NA</u>	ar flood level? is application. he facility? <u>St</u> eparate storm	Maps c	an be orc	nediate pr	ww.fema.	<u>.gov</u> . areas is r	outed
6.	Is the prop If "No <u>the W</u> Population Backup Po	bosed or existing <u>NOTE</u> : FEM 0", what measures WTP, storm wate h for Municipal an	facility lo A Map m are (or v or in outly ad Domes for Treatr	ocated above nust be incle will be) use wing areas stic Sewer nent Plants	ve the 100-ye uded with thi ad to protect t is routed to se Systems: <u>NA</u>	ar flood level? is application. he facility? <u>St</u> eparate storm	Maps c	an be orc	nediate pr	ww.fema.	<u>.gov</u> . areas is r	outed

SE	CTION C – WASTE STORAGE AND DISPOSAL INFORMATION
.	Sludge Disposal Method (Check as many as are applicable):
	Landfill
	Landfill Site Name North Landfill ADEQ Solid Waste Permit No. 292-S3N
	Land Application: ADEQ State Permit No
	Septic tank Arkansas Department of Health Permit No.:
	Distribution and Marketing: Facility receiving sludge:
	Name: Address:
	City: State: Zip: Phone:
	Rail: Pipe: Other:
	Subsurface Disposal (Lagooning):
	Location of lagoon How old is the lagoon?
	Surface area of lagoon: Acre Depth: ft Does lagoon have a liner? Yes No
	Incineration: Location of incinerator
	Remains in Treatment Lagoon(s):
	How old is the lagoon(s)? Has sludge depth been measured? Yes No
	If Yes, Date measured? Sludge Depth? ft If No, When will it be measured?
	Has sludge ever been removed? Yes No If Yes, When was it removed?
\boxtimes	Other (Provide complete description): Closure material for the former sludge pond.

Here Ca

10 5 1

5.7

Ş

SECTION D - WATER SUPPLY

Water	Sources (check as many as are applicable):					
\square	Private Well - Distance from Discharge point: 🗌 Within 5 miles 🛛 Within 50 miles					
\boxtimes	Municipal Water Utility (Specify City): Crossett					
	Distance from Discharge point: 🗌 Within 5 miles 🛛 Within 50 miles					
\boxtimes	Surface Water- Name of Surface Water Source: Lake GP/Saline river					
	Distance from Discharge point: 🔲 🗆 🖓 Within 5 miles 🛛 🖄 Within 50 miles					
	Lat: <u>33</u> ° <u>15</u> ' <u>075</u> " Long: <u>92</u> ° <u>02</u> ' <u>554</u> "					
	Other (Specify):					
	Distance from Discharge point: 🔲 🗆 Within 5 miles 📄 Within 50 miles					

e

į.

ECTION E: FINANCIAL ASSURANCE AND DISCLOSURE STATEMENT

Arkansas Code Annotated § 8-4-203 provides for financial assurance requirements for permitting non-municipal domestic sewage treatment systems. Arkansas Code 8-4-203 (b)(1)(A)(i) – "The department shall not issue, modify, or renew a National Pollutant Discharge Elimination System permit or state permit for a non-municipal domestic sewage treatment works without the permit applicant first demonstrating to the department its financial ability to cover the estimated costs of operating and maintaining the non-municipal domestic sewage treatment works for a minimum period of five (5) years."

The applicant must provide a detailed estimate of the operation and maintenance (O&M) costs for the facility for a five year period. Once the O&M estimate is approved, the applicant must provide <u>financial assurance</u> in order to show that the facility is able to cover the costs of operating and maintaining the treatment system for the next five years.

The minimal financial assurance may be demonstrated to the department by using the following as outlined in Arkansas Code 8-4-203(b)(2):

- A. Obtaining insurance that specifically covers operation and maintenance costs
- B. Obtaining a letter of credit;
- C. Obtaining a surety/performance bond;
- D. Obtaining a trust fund or an escrow account; or
- E. Using a combination of insurance, letter of credit, surety bond, trust fund, or escrow account.
- 2. Disclosure Statement:

1.

Arkansas Code Annotated Section 8-1-106 requires that all applicants for any type of permit or transfer of any permit, license, certification or operational authority issued by the Arkansas Department of Environmental Quality (ADEQ) file a Disclosure Statement with their application. The filing of a Disclosure Statement is mandatory. No application can be considered administratively complete without a completed Disclosure Statement. The form may be obtained from the ADEQ web site at:

http://www.adeq.state.ar.us/disclosure_stmt.pdf

ECTION F – INDUSTRIAL ACTIVITY

1. Does an effluent guideline limitation promulgated by EPA (Link to a Listing of the 40 CFR Effluent Limit Guidelines) under Section 304 of the Clean Water Act (CWA) apply to your facility?

YES \boxtimes (Answer questions 2 and 3) NO \square

2. What Part of 40 CFR? 430, 429, 414 and 454

ß

- 3. What Subpart(s)? <u>430 Subpart B, 429 Subparts B,C&K, 414 Subparts E&F, and 454 Subpart D</u>
- 4. Give a brief description of all operations at this facility including primary products or services (attach additional sheets if necessary):

The Georgia-Pacific Complex consists of a Kraft Pulp and Papermill, which produces tissue paper, and paperboard, Plywood and Stud mills, and a Chemical Plant, which manufactures phenol and urea formaldehyde resins and tall oil products. For a more detailed description please see the attachments.

5. Production: (projected for new facilities)

	Last 12 Months		Highest Production Year of Last 5 Years		
Product(s) Manufactured	11	lbs/day*		day*	
(Brand name) See 2C pg 2 of 4 Section 3.C.1.	Highest Month	Days of Operation	Monthly Average	Days of Operation	

* These units could be off-lbs, lbs quenched, lbs cleaned/etched/rinsed, lbs poured, lbs extruded, etc.

ECTION G - WASTEWATER DISCHARGE INFORMATION

Facilities that checked "Yes" in question 1 of Section F are considered Categorical Industrial Users and should skip to question 2.

1. For Non-Categorical Users Only: List average wastewater discharge, maximum discharge, and type of discharge (batch, continuous, or both), for each plant process. Include the reference number from the process flow schematic (reference Figure 1) that corresponds to each process. [New facilities should provide estimates for each discharge.]

No.	Process Description	Average Flow (GPD)	Maximum Flow (GPD)	Type of Discharge (batch, continuous, none)
	NA			

If batch discharge occurs or will occur, indicate: [New facilities may estimate.]

Number of batch discharges: _____ per day Average discharge per batch: (GPD)

Time of batch discharges

(days of week)

(hours of day)

Flow rate: _____ gallons/minute

Percent of total discharge:

at

Answer questions 2, 3, 4, and 5 only if you are subject to Categorical Standards.

For Categorical Users: Provide the wastewater discharge flows for each of your processes or proposed processes. Include the reference number from the process flow schematic (reference Figure 1) that corresponds to each process. [Note: 1) New facilities should provide estimates for each discharge and 2) Facilities should denote whether the flow was measured or estimated.]

No.	Regulated Process	Average Flow (GPD)	Maximum Flow (GPD)	Type of Discharge (batch, continuous, none)
P1	Pulp and Paper	14,500,000	26,200,000	Continuous
P2	Pulp, Paper and Recovery	8,300,000	15,600,000	Continuous
P3	Chemical, Plywood, Stud mill, Utilities, and Bleach	15,300,000	42,700,000	Continuous

Unregulated Process	Average Flow (GPD)	Maximum Flow (GPD)	Type of Discharge (batch, continuous, none)
NA			
		Unregulated Process (GPD)	Unregulated Process (GPD) (GPD)

こうから、「なる」ないない。 ないないないないない おしましつ 人気をしたい

A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OW

2.

No.	Dilution (e.g., Cooling Water)	Average Flow (GPD)	Maximum Flow (GPD)		Discharge ontinuous, none)	
	NA					
						
	batch discharge occurs or will c	•	, j			
Nı	umber of batch discharges:	per day Averag	ge discharge per batch:	(GPI	D)	
Ti	me of batch discharges (6	days of week)	(hours of day)			
Fl	ow rate: gallons/minute	Percent of total	discharge:			
Do you	have, or plan to have, automati	ic sampling equipment or c	continuous wastewater	flow metering	g equipment at th	is facili
Curren	t: Flow Metering 🛛 Sampling Equipment 🖂	Yes Type: <u>Continuou</u> Yes Type: <u>Automa</u>	is No	□ No	N/A 🗌	
Plannee	d: Flow Metering 🔲 Sampling Equipment 🗌	Yes Type: Yes Type:	No		N/A	
100 mlood						
	e indicate the present or future atic sampling equipment and co	ontinuous flow metering eq	uipment are located at			
he autom	atic sampling equipment and co	ontinuous flow metering eq	uipment are located at	Outfalls 001 a	and SMS 002.	
he autom	atic sampling equipment and co	ontinuous flow metering eq	uipment are located at	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	
The autom	atic sampling equipment and co process changes or expansions Yes Xo No	phinuous flow metering eq planned during the next th (If no, skip Ques	uipment are located at aree years that could all stion 5)	Outfalls 001 a	and SMS 002.	

× 1

5.

ECTION H - TECHNICAL INFORMATION

Technical information to support this application shall be furnished in appropriate detail to understand the project. Information in this Part is required for obtaining a construction permit or for modification of the treatment system.

1. Describe the treatment system. Include the types of control equipment to be installed along with their methods of operation and control efficiency.

Not applicable

- 2. One set of construction plans and specifications, approved (Signed and stamped) by a **Professional Engineer** (PE) registered in **Arkansas**, must be submitted as follows:
 - a. The plans must show flow rates in addition to pertinent dimensions so that detention times, overflow rates, and loadings per acre, etc. can be calculated.
 - b. Specifications and complete design calculations.
 - c. All treated wastewater discharges should have a flow measuring device such as a weir or Parshall flume installed. Where there is a significant difference between the flow rates of the raw and treated wastewater, a flow measuring device should be provided both before and after treatment.
- 3. If this application includes a construction permit disturbing five or more acres, a storm water construction permit must be obtained by submitting a notice of intent (NOI) to ADEQ.

SECTION I: SIGNATORY REQUIREMENTS

gnizant Official (Duly Authorized Representative)

40 CFR 122.22(b) states that all reports required by the permit, or other information requested by the Director, shall be signed by the applicant (or person authorized by the applicant) or by a duly authorized representative of that person. A person is duly authorized representative only if:

- (1) the authorization is made in writing by the applicant (or person authorized by the applicant);
- (2) the authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity responsibility, or an individual or position having overall responsibility for environmental matters for the company.

The applicant hereby designates the following person as a Cognizant Official, or duly authorized representative, for signing reports, etc., including Discharge Monitoring Reports (DMR) required by the permit, and other information requested by the Director:

Signature of Cognizant Official:	Date:
Printed name of Cognizant Official:	
Official title of Cognizant Official:	Telephone Number:

Responsible Official

The information contained in this form must be certified by a *responsible official* as defined in the "signatory requirements for permit applications" (40 CFR 122.22).

Responsible official is defined as follows:

orporation, a principal officer of at least the level of vice president

rtnership, a general partner

Sole proprietorship: the proprietor

Municipal, state, federal, or other public facility: principal executive officer, or ranking elected official.

Gary W. Kais

(Initial) "I certify that the cognizant official designated above is qualified to act as a duly authorized representative under the provisions of 40 CFR 122.22(b)." NOTE: If no duly authorized representative is designated in this section, the Department considers the applicant to be the responsible official for the facility and only reports, etc., signed by the applicant will be accepted by the Department.

(Initial) "I certify that, if this facility is a corporation, it is registered with the Secretary of State in Arkansas. Please provide the full name of the corporation if different than that listed in Section A above."

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations. I further certify under penalty of law that all analyses reported as less than detectable in this application or attachments thereto were performed using the EPA approved test method having the lowest detection limit for the substance tested."

Signature	- 6	D	11.1.	000	
Signature	OT	Kespo	onsidie	UTTIC	cial.

Laipon	Date:	5-4-15
er		

Printed name of Responsible Official:

Official title of Responsible Official: <u>Vice President of Manufacturing</u> Telephone Number: (870) 567-8310 — I certify that Georgia - Pacific LLC is a Delaware — limited liability company and is registered with the Secretary of State in Arkansas.

Revised September 2014

Page 13

ARKANSAS DEPARTMENT OF ENVIRONMENTAL QUALITY DISCLOSURE STATEMENT

Instructions for the Completion of this Document:

- A. Individuals, firms or other legal entities with no changes to an ADEQ Disclosure Statement, complete items 1 through 5 and 18.
- B. Individuals who never submitted an ADEQ Disclosure Statement, complete items 1 through 4, 6, 7, and 16 through 18.
- C. Firms or other legal entities who never submitted an ADEQ Disclosure Statement, complete 1 through 4, and 6 through 18.

If Not Submitting by ePortal, Mail Original to: ADEQ DISCLOSURE STATEMENT [*List Proper Division(s)*] 5301 Northshore Drive North Little Rock, AR 72118-5317

1. APPLICANT: (Full Name)	
Georgia-Pacific LLC	
2. MAILING ADDRESS (Number and Street, P.O.Box Or Rural Route) :	
100 Mill Supply Road, P.O. Box 3333	
3. CITY, STATE, AND ZIPCODE:	
Crossett, AR 71635	

4a. Applicant Type:	
Individual Corporate or Other Entity	
	İ
4b. Reason for Submission:	
Permit License Certification Operational Authority	
New Application Modification 🖌 Renewal Application (If no changes from previous disclosure statement, complete number 5 and 18.))
4c. Division:	
🗌 Air 🗹 Water 📋 Hazardous Waste 📄 Regulated Storage Tank 📄 Mining 📄 Solid Waste	

5. Declaration of No Changes:	
The violation history, experience and credentials, involvement in current or pending environmental lawsuits, civil and criminal, l	have not changed since the
last Disclosure Statement that was filed with ADEQ on N/A - updated information provided on this form.	,

6. Describe the experience and credentials of the Applicant, including the receipt of any past or present permits, licenses, certifications or operational authorization relating to environmental regulation. (Attach additional pages, if necessary.)

1. 27 2. 6

The facility employs a staff of environmental professionals to oversee regulatory compliance at the mill. Four employees maintain a current Industrial Wastewater License. The current Environmental Manager is a registered professional engineer (P.E.) with over 9 years of experience working in the paper industry.

Georgia-Pacific's Crossett Paper Mill currently operates under a number of environmental permits, including the NPDES permit which is currently being renewed, a Title V air permit, two landfill permits and stormwater registrations. All of these permits are listed in the NPDES Permit renewal application.

7. List and explain all civil or criminal legal actions by government agencies involving environmental protection laws or regulations against the Applicant * in the last ten (10) years including:

1. Administrative enforcement actions resulting in the imposition of sanctions;

2. Permit or license revocations or denials issued by any state or federal authority;

3. Actions that have resulted in a finding or a settlement of a violation; and

4. Pending actions.

(Attach additional pages, if necessary.)

Georgia-Pacific LLC is a global company with approximately 200 direct and indirect subsidiary companies. Georgia-Pacific LLC and its affiliated companies have approximately 200 manufacturing and associated facilities. These facilities have environmental permits and/or are subject to numerous environmental requirements. During the past 10 years, some of GP's facilities have been or are subject to some form of enforcement action. Applicant can provide information regarding such actions, unrelated to the Crossett Complex, if requested by ADEQ.

Enforcement actions specifically related to the Crossett Paper Mill and other operations at GP's Crossett Complex include:

- On or about June 9, 2007, the Crossett Paper Mill entered into 2 related Consent Administrative Orders (LIS:07-058 and LIS:07-059) with ADEQ.

- On or about December 13, 2010, GP's Crossett Plywood and Studmill entered into Consent Administrative Order LIS:10-209 with ADEQ.

- On or about January 13, 2011, the Crossett Paper Mill and US EPA Region 6 entered into CAA-06-2010-3501.

- On or about March 28, 2011, the Crossett Paper Mill entered into a Consent Administrative Order LIS:11-060 with ADEQ.

Additionally, the Crossett Paper Mill, as well as GP's other operations in Crossett, have been subject to recent inspections by Arkansas DEQ and the US EPA. GP is currently in discussions with EPA to resolve findings arising from those inspections.

* Firms or other legal entities shall also include this information for all persons and legal entities identified in sections 8-16 of this Disclosure Statement.

8. List all officers of the Applicant. (Add addi	itional pages, if necessary.)
NAME: See attachment	TITLE:
STREET:	
-	
NAME:	TITLE:
STREET:	
CITY, STATE, ZIP:	
NAME	
9. List all directors of the Applicant. (Add add	litional pages, if necessary.)
	TITLE:
STREET:	
CITY, STATE, ZIP:	
	TITLE:
CITY, STATE, ZIP:	
NAME:	
CITY, STATE, ZIP:	
10. List all partners of the Applicant. (Add add	
NAME: Not applicable	TITLE:
STREET:	
CITY, STATE, ZIP:	
NAME:	
STREET:	
CITY, STATE, ZIP:	
NAME.	
	TITLE:
STREET:	
STREET:	
STREET:CITY, STATE, ZIP:	
STREET:	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET:	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET:	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Sarah Ross	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Sarah Ross STREET: 100 Paper Mill Road	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Sarah Ross	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Sarah Ross STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Sarah Ross STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Rachel Johnson	n a supervisory capacity or with authority over operations of the facility subject to this application.
STREET: CITY, STATE, ZIP: 11. List all persons employed by the Applicant in NAME: Gary Kaiser STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635 NAME: Sarah Ross STREET: 100 Paper Mill Road CITY, STATE, ZIP: Crossett, AR 71635	n a supervisory capacity or with authority over operations of the facility subject to this application.

2

And the second

A CARLEND AND AND A CARLEND

0	or control more than five percent (5%) of the Applicant's debt or equity.
	TITLE:
STREET:	
CITY, STATE, ZIP:	
NAME:	TITLE:
CITY, STATE, ZIP:	
NAME:	TITLE:
CITY, STATE, ZIP:	
13. List all legal entities in which the Annlican	it holds a debt or equity interest of more than five percent (5%).
	TITLE:
NAME:	
CITY, STATE, ZIP:	
	TITLE:
STREET:	
CITY, STATE, ZIP:	
NAME: Georgia-Pacific Holdings, LLC STREET: 133 Peachtree Street NE CITY, STATE, ZIP: Atlanta, GA 30303 Organizational Relationship: Owns 100% of Georgia-Pacific LLC	
15. List any subsidiary of the Applicant. Descril	be the subsidiary's ongoing organizational relationship with the Applicant.
NAME:	
STREET:	
Organizational Relationship:	
-	
Georgia-Pacific LLC is a global company provide such information in this statement upon request.	y with approximately 200 direct and indirect subsidiary companies. It is not feasible to nt. Georgia-Pacific will provide specific information relevant to its Crossett operations

7.044

77

ķ

16. List any person who is not now in compliance or has a history of noncompliance with the environmental laws or regulations of this state or any other jurisdiction and who through relationship by blood or marriage or through any other relationship could be reasonably expected to significantly influence the Applicant in a manner which could adversely affect the environment.

p

NAME: See attached.	TITLE:
CITY, STATE, ZIP:	
NAME:	TITLE:

17. List all federal environmental agencies and any other environmental agencies outside this state that have or have had regulatory responsibility over the Applicant.

Applicant Georgia-Pacific LLC is subject to the regulatory authority of the US Environmental Protection Agency and, where wetlands may be implicated, the US Army Corps of Engineers. Additionally, Applicant and its affiliates have operations across the United States and are subject to the regulatory authority of many state environmental agencies. Given the size and longevity of Applicant, its predecessors and affiliated companies, there may be other regulatory agencies, inside or outside of the US, with responsibility over various Georgia-Pacific operations.

18. VERIFICATION AND ACKNOWLEDGEMENT

The Applicant agrees to provide any other information the director of the Arkansas Department of Environmental Quality may require at any time to comply with the provisions of the Disclosure Law and any regulations promulgated thereto. The Applicant further agrees to provide the Arkansas Department of Environmental Quality with any changes, modifications, deletions, additions or amendments to any part of this Disclosure Statement as they occur by filing an amended Disclosure Statement.

DELIBERATE FALSIFICATION OR OMISSION OF RELEVANT INFORMATION FROM DISCLOSURE STATEMENTS SHALL BE GROUNDS FOR CIVIL OR CRIMINAL ENFORCEMENT ACTION OR ADMINISTRATIVE DENIAL OF A PERMIT, LICENSE, CERTIFICATION OR OPERATIONAL AUTHORIZATION.

COMPLETE THIS SECTION ONLY IF SUBMITTING OTHER THAN BY EPORTAL:

I, <u>Gary Kaiser</u>, certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violation.

APPLICANT SIGNATURE: Gaus Kainap
TITLE: Vice President, Manufacturing
DATE: May 1, 2015

\$

Arkansas Disclosure Statement Georgia-Pacific LLC -Crossett Paper Operations NPDES Permit No. AR0001210

8. Officers of Georgia-Pacific LLC

Jones, Wesley	Executive Vice President
Berryman, Timothy J.	Assistant Treasurer
DeLorenzo, Mark V.	Assistant Treasurer
Silverman, Lisa R.	Assistant Treasurer
Mingledorff, Ann F.	Assistant Secretary
Ragsdale, George T.	Assistant Secretary
Cason, Christine M.	Assistant Secretary
Price, Gary L.	Vice President - Taxes
Walters, Kathleen A.	Executive Vice President - Consumer Products Group
Fischer, Christian	Executive Vice President - Packaging
Brehm, Julie A.	Senior Vice President - Human Resources
Darland, Tye G.	Senior Vice President - General Counsel and Secretary
Park, David G.	Senior Vice President - Strategy and Business Development
Robison, Randal K.	Senior Vice President - Chief Information Officer
Woolson, Tyler L.	Senior Vice President and Chief Financial Officer
Adams, Ashley J.	Assistant Secretary
Luetters, Mark E.	Executive vice President - Building Products
Tyler, Walter	Senior Vice President - Health and Safety
Kruljac, Michael V.	Assistant Secretary
Gorman, Richard M.	Assistant Treasurer - Taxes
Stagmeier, John H.	Assistant Treasurer - Taxes
Tompkins, Michael D.	Vice President - Building Products
Champion, Bryant T.	Senior Vice President - Environmental
Knigge, Diana M.	Senior Vice President - Compliance and Ethics
Zito, Ashley H.	Assistant Secretary
Andrews, Katelyn	Assistant Secretary
Shirk, Gerald A.	Treasurer and Vice President - Real Estate
Cline, Debra S.	Assistant Secretary
Weidman, Sheila	Senior Vice President - Communications, Government and Public Affairs
Patin II, Joseph P.	Assistant Treasurer - Taxes
Adams, Michael E.	Senior Vice President - Supply and Trading, Fiber and Energy
Martin, Joseph R.	Assistant Secretary
Berry, Mark D.	Assistant Secretary
Waldrep, Marvin L.	Assistant Secretary
Hannan, James B.	President and Chief Executive Officer
Paugh, Brent H.	Senior Vice President - Gypsum

Arkansas Disclosure Statement Georgia-Pacific LLC -Crossett Paper Operations NPDES Permit No. AR0001210

12. Georgia-Pacific LLC's parent company is Georgia-Pacific Holdings, LLC. Georgia-Pacific LLC's outstanding debt consists mainly of bonds and other indebtedness that do not trade on public markets. Therefore, GP has only limited information on the holders of its debt and cannot readily confirm ownership percentage.

16. We are not aware of any noncompliance by an employee, relative, spouse, or other relationship that could be reasonable expected to significantly influence the Applicant in a manner which would adversely affect the environment.

a.

Application Form <u>PPS</u>

Priority Pollutant Scan Information

E:NEWMAIN:FORMS:FORM PP: Revised 12/0

50

1

1

ATTENTION

AClean@ Sampling Techniques

Water quality (WQ) standards (Based on aquatic toxicity and human health criteria) for many of the heavy metals are Aat@ analytical methods= detection levels (MDL).

It is recognized that <u>unclean</u> sampling and lab techniques can and do <u>cause</u> contamination sometimes causing measurements to be Aseen@ as <u>violations</u> of the WQ standards. Therefore, the permittee must recognize the <u>importance</u> of <u>eliminating</u> contamination.

No.

For personnel responsible for collecting samples in answer to effluent monitoring requirements, the Department recommends following sample collection and handling in accordance with EPA=s <u>Method</u> <u>1669: Sampling Ambient Water for Determination of Trace Metals at EPA Water Quality Criteria</u> <u>Levels</u> as closely as possible and as economically feasible. A copy of Method 1669 is available upon request.

Please convey to your contract testing laboratory the extreme importance of proper sampling techniques associated with analytical testing for heavy metals. Some of the techniques may be considered too expensive to justify implementation but it could be in the best interest of your facility to <u>submit the PPS</u> Form by using common sense AClean@ Sampling Techniques.

GENERAL INSTRUCTION

- 1. Generation of a form similar to the <u>PPS</u> form is prohibited without expressed written permission of ADEQ, Discharge Permits Section, Water Division.
- 2. All major facilities, all categorical industries, or any facility that believes there are priority pollutant(s) present in their discharge, must submit the Form <u>PPS</u>.
- 3. All facilities must monitor for metals and cyanide.

- 4. Testing requirements for categorical industries are listed in Attachment 1.
- 5. If one of the EPA approved test methods (40 CFR Part 136) is used the method detection level (MDL) <u>must be as low as Minimum Quantification Levels</u> (MQL). MQLs are based on EPA Region 6 guidance dated April 10, 2006: "MQL = 3.3 X MDL"
- 6. All the units must be expressed in $\mu g/l$ (Micro grams per liter).

7. <u>All the results less than Used Method Detection Level Achieved are reported as ND (Not Detected).</u>

- 8. The data requested for the priority pollutant scan in the enclosures shall be submitted with copies of the laboratory results, MDLs and MQLs. Certification that QA/QC procedures were implemented must be submitted with the requested information.
- 9. All analyses must be performed at the minimum level of sensitivity. The analyses must demonstrate that an acceptable calibration point as low as MQL was used. Test procedures must conform to approved EPA methodology listed in 40 CFR Part 136.

ATTACHMENT 1

TESTING REQUIREMENTS FOR ORGANIC TOXIC POLLUTANTS INDUSTRY CATEGORY

INDUSTRY CATEGORY

	Volatile	Acid	Base/Neutral	Pesticide
Adhesives & Sealants	х	Y	~	
Aluminum Forming	Ŷ	Ŷ	Ŷ	-
Auto & Other Laundries	x	Ŷ	Ŷ	-
Battery Manufacturing	x	~	~	~
Coal Mining	Ŷ	Y	$\hat{\mathbf{v}}$	-
Coll Coating	Ŷ	Ŷ	~	Χ.
Copper Forming	Ŷ	× ×	Ŷ	=
Electric & Electronic Compounds	Ŷ	Ŷ	$\hat{\mathbf{v}}$	-
Electroplating	Ŷ	Ŷ	~	X
Explosives manufacturing	-	Ŷ	÷	-
Foundries	×	Ŷ	Ş	-
Gum & wood Chemicals	Ŷ	Ŷ	Å.	
INOFGANIC Chemicals Manufacturing	Ŷ	Ŷ	X	X
Iron & Steel Manufacturing Leather Tanning & Finishing Mechanical Products Manufacturing	Ŷ	$\hat{\mathbf{v}}$	×.	-
Leather Tanning & Finishing	x	$\hat{\mathbf{v}}$	X	-
Mechanical Products Manufacturing	Ŷ	÷.	X	X
NUMPERTURS MELAIS MANUTACTURING	Ŷ	~ ~	X	-
Ore Mining	Ŷ	Š.	X	X
Organic Chemicals Manufacturing	Ŷ	×.	X	X
Paint & Ink Formulation	÷	X	X	X
Pesticides	÷.	X	X	X
Petroleum Refining	Č.	X	X	X
Pharmaceutical Preparations	X	X	X	X
Photographic Equipment & Supplies	X	_ X	x	-
Photographic Equipment & Supplies Plastic & Synthetic Materials Manufacturing	X	X	X	X
Plastic Processing	X	X	x	X
Porcelain Enameling	X	-	<u> </u>	-
Printing & Dubliching	X	-	X	X
Printing & Publishing Pulp & Paperboard Mills	X	X	X	X
Rubbon Brococcing	X	X	Х	x
Rubber Processing	X	Х	X	-
Soap & Detergent Manufacturing	X	Х	X	-
Steam Electric Power Plants	X	Х	x	-
Textile Mills	X	X	x	Х
Timber Products Processing	Х	Х	x	X

CALL STREET STATES

X Testing required. - Testing not required.

ARKANSAS Department of Environmental Quality PPS REQUIREMENTS

1. Name of facility:

Georgia-Pacific LLC, Crossett Paper Operations

2. Name, address and telephone number of laboratory:

PPS w/o TCDDTCDDAmerican InterplexSGS Analytical Perspectives8600 Kanis Road5500 Business DriveLittle Rock, AR 72204wilmington, NC 28405(501) 224-5060(910) 350-1903

- 3. Is the lab certified by the State of Arkansas? Yes _X____ No ____
- 4. What are the certification dates?

Issued data 02/28/2014 Expire date 02/28/2015

5. Is the laboratory certified for all the parameters?

YES X____ NO _____ (Explain)

6. Date and time of samples collected:

10/21/14, 10:54 am

7. Date and time samples were received in the laboratory:

<u>10/21/14, 15:55 pm</u>

- 8. Sample location (Outfall No.):
 - <u> Outfall 001</u>
- 9. Samples collected by:

Name <u>Rachel Johnson/Danny Rice</u>

Title Environmental Engineer/Environmental Specialist

Telephone <u>870-567-8170</u>

10. I certify under penalty of law that this document and all attachments were prepared under my direction of supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

<u>Gary W. Kaiser</u> Printed Name of person signing	<u>Vice-President of Manufacturing</u> Title
Signature	J-4-15 Date signed
∇ b List all attachments to this form:	-
NA	

				LABORATORY ANALYSIS		
	MET4	ALS AND CYANIDE	RESULTS (μg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/l)	REQUIRED MQL (μg/l)
1.	Antimony	(Total), Recoverable	ND	EPA 200.8	60	60
2.	Arsenic	(Total), Recoverable	1.9	EPA 200.8	0.5	0.5
3.	Beryllium	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
4.	Cadmium	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
5.	Chromium	(Total), Recoverable	ND	EPA 200.8	10	10
7.	Chromium	(6+), Dissolved	ND	SM 3500- Cr B	10	10
8.	Copper	(Total), Recoverable	21	EPA 200.8	0.5	0.5
9.	Lead	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
10.	Mercury	(Total), Recoverable	0.0030	EPA 245.1	0.005	0.005
12.	Nickel	(Total), Recoverable	11	EPA 200.8	0.5	0.5
13.	Selenium	(Total), Recoverable	ND	EPA 200.8	5	5
_14.	Silver	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
15.	Thallium	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
16.	zinc	(Total), Recoverable	26	EPA 200.8	20	20
129.	Phenols, To	tal Recoverable	13	EPA 420.1	5	5
17.	Cyanide	(Total), Recoverable	ND	SM 4500- CN C,E	10	10

į.

•

100

2.5

-

£ 7.

	LABORATORY ANALYSIS			
DIOXIN	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (µg/1)
18. 2,3,7,8-Tetrachloro-debenzo-p- dioxin (TCDD)	ND	1613	0.000010	0.00001

		LABORATORY ANALYSIS			
	VOLATILE COMPOUNDS	RESULTS (μg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/l)	REQUIRED MQL (μg/1)
19.	Acrolein	ND	EPA 624	50	50
20.	Acrylonitrile	ND	EPA 624	20	20
21.	Benzene	ND	EPA 624	10	10
22.	Bromoform	ND	EPA 624	10	10
23.	Carbon Tetrachloride	ND	EPA 624	2.0	2
24.	Chlorobenzene	ND	EPA 624	10	10
25.	Chlorodibromomethane	ND	EPA 624	10	10
26.	Chloroethane	ND	EPA 624	50	50
27.	2-Chloroethyl vinyl ether	ND	EPA 624	10	10
28.	Chloroform	ND	EPA 624	10	10
29.	Dichlorobromomethane	ND	EPA 624	10	10
30.	1,1-Dichloroethane	ND	EPA 624	10	10
31.	1,2-Dichloroethane	ND	EPA 624	10	10
32.	1,1-Dichloroethylene	ND	EPA 624	10	10
33.	1,2-Dichloropropane	ND	EPA 624	10	10
34.	1,3-Dichloropropylene	ND	EPA 624	10	10
35.	Ethylbenzene	ND	EPA 624	10	10
36.	Methyl Bromide [Bromomethane]	ND	EPA 624	50	50
37.	Methyl Chloride [Chloromethane]	ND	EPA 624	50	50
38.	Methylene Chloride	ND	EPA 624	20	20
39.	1,1,2,2-Tetrachloroethane	ND	EPA 624	10	10
40.	Tetrachloroethylene	ND	EPA 624	10	10
41.	Toluene	ND	EPA 624	10	10
42.	1,2-trans-Dichloroethylene	ND	EPA 624	10	10
43.	1,1,1-Trichloroethane	ND	EPA 624	10	10
44.	1,1,2-Trichloroethane	ND	EPA 624	10	10
45.	Trichloroethylene	ND	EPA 624	10	10
46.	Vinyl Chloride	ND	EPA 624	10	10

A B

		LABORATORY ANALYSIS			
	ACID COMPOUNDS	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (µg/1)
47.	2-Chlorophenol	ND	EPA 625	10	10
48.	2,4-Dichlorophenol	ND	EPA 625	10	10
49.	2,4-Dimethylphenol	ND	EPA 625	10	10
50.	4,6-Dinitro-o-Cresol [2 methyl 4,6-dinitrophenol	ND	EPA 625	50	50
51.	2,4-Dinitropheno1	ND	EPA 625	50	50
52.	2-Nitrophenol	ND	EPA 625	20	20
53.	4-Nitrophenol	ND	EPA 625	50	50
54.	P-Ch]oro-m-Creso] [4 chloro-3-methylphenol]	ND	EPA 625	10	10
55.	Pentachlorophenol	ND	EPA 625	5.0	5
56.	Pheno 1	ND	EPA 625	10	10
57.	2,4,6-Trichlorophenol	ND	EPA 625	10	10

		LABORATORY ANALYSIS			
	BASE/NEUTRAL COMPOUNDS	RESULTS (μg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (µg/1)
58.	Acenaphthene	ND	EPA 625	10	10
.59.	Acenaphthylene	ND	EPA 625	10	10
60.	Anthracene	ND	EPA 625	10	10
61.	Benzidine	ND	EPA 625	50	50
62.	Benzo(a)anthracene	ND	EPA 625	5.0	5
63.	Benzo(a)pyrene	ND	EPA 625	5.0	5
64.	<i>3,4-Benzofluoranthene</i>	ND	EPA 625	10	10
65.	Benzo(ghi)perylene	ND	EPA 625	20	20
66.	Benzo(k)fluoranthene	ND	EPA 625	5.0	5
67.	Bis(2-chloroethoxy) methane	ND	EPA 625	10	10
68.	Bis(2-chloroethyl) ether	ND	EPA 625	10	10
69.	Bis(2-chloroisopropyl) ether	ND	EPA 625	10	10
70.	Bis(2-ethylhexyl) phthalate	25	EPA 625	10	10
71.	4-Bromophenyl phenyl ether	ND	EPA 625	10	10
72.	Butyl benzyl phthalate	ND	EPA 625	10	10
73.	2-Chloronapthalene	ND	EPA 625	10	10
74.	4-Chlorophenyl phenyl ether	ND	EPA 625	10	10
75.	Chrysene	ND	EPA 625	5.0	5
76.	Dibenzo (a,h) anthracene	ND	EPA 625	5.0	5
77.	1,2-Dichlorobenzene	ND	EPA 624	10	10
78.	1,3-Dichlorobenzene	ND	EPA 624	10	10
79.	1,4-Dichlorobenzene	ND	EPA 624	10	10
80.	3,3'-Dichlorobenzidine	ND	EPA 625	5.0	5
81.	Diethyl Phthalate	ND	EPA 625	10	10
82.	Dimethyl Phthalate	ND	EPA 625	10	10
83.	Di-n-Butyl Phthalate	ND	EPA 625	10	10
84.	2,4-Dinitrotoluene	ND	EPA 625	10	10
85.	2,6-Dinitrotoluene	ND	EPA 625	10	10
86.	Di-n-octyl Phthalate	ND	EPA 625	10	10

1. .

Street as in

- Fr

den de la

e tender

27 S. 18
		LAI			
	BASE/NEUTRAL COMPOUNDS	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/l)	REQUIRED MQL (μg/1)
87.	1,2-Diphenylhydrazine	ND	EPA 625	20	20
89.	Fluorene	ND	EPA 625	10	10
90.	Hexachlorobenzene	ND	EPA 625	5.0	5
91.	Hexachlorobutadiene	ND	EPA 625	10	10
<u>92.</u>	Hexachlorocyclopentadiene	ND	EPA 625	10	10
93.	Hexachloroethane	ND	EPA 625	20	20
94.	Indeno (1,2,3-cd) pyrene (2,3-o-phenylene pyrene)	ND	EPA 625	5.0	5
<i>95.</i>	Isophorone	ND	EPA 625	10	10
<u>96.</u>	Naphthalene	ND	EPA 625	10	10
<u>97.</u>	Nitrobenzene	ND	EPA 625	10	10
<u>98</u> .	N-nitrosodimethylamine	ND	EPA 625	50	50
<i>99.</i>	N-nitrosodi-n-propylamine	ND	EPA 625	20	20
100.	N-nitrosodiphenylamine	ND	EPA 625	20	20
101.	Phenanthrene	ND	EPA 625	10	10
102.	Pyrene	ND	EPA 625	10	10
103.	1,2,4-Trichlorobenzene	ND	EPA 625	10	10

 $\mathbf{I}_{\mathbf{c}}$

.

والمتحدث

÷.,

		LAL	BORATORY ANAL	YSIS	
	PESTICIDES	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (μg/1)
104. A	Aldrin	ND	EPA 608	0.010	0.01
<u>105.</u> A	А1pha-BHC	ND	EPA 608	0.050	0.05
106. I	Beta-BHC	ND	EPA 608	0.050	0.05
<u>107.</u> (Gamma-BHC	ND	EPA 608	0.050	0.05
108. L	Delta-BHC	ND	EPA 608	0.050	0.05
109. d	Chlordane	ND	EPA 608	0.20	0.2
110. 4	4,4'-DDT	ND	EPA 608	0.020	0.02
<u>111.</u> 4	4,4'-DDE (p,p-DDX)	ND	EPA 608	0.10	0.1
112. 4	4,4'-DDD 9(p,p-TDE)	ND	EPA 608	0.10	0.1
<u>113.</u> L	Dieldrin	ND	EPA 608	0.020	0.02
<u>114.</u> A	Alpha-endosulfan	ND	EPA 608	0.010	0.01
115. E	Beta-endosulfan	ND	EPA 608	0.020	0.02
116. E	Endosulfan sulfate	ND	EPA 608	0.10	0.1
117. E	Endrin	ND	EPA 608	0.020	0.02
<u>118.</u> E	Endrin aldehyde	ND	EPA 608	0.10	0.1
119. н	Heptachlor	ND	EPA 608	0.010	0.01
120. H	Heptachlor epoxide (BHC-hexachlorocyclohexane)	ND	EPA 608	0.010	0.01
<u>130.</u> C	chlorpyrifos	ND	EPA 608	0.070	0.07
121. F	РСВ-1242	ND	EPA 608	0.20	0.2
<u>122.</u> F	<u>PCB-1254</u>	ND	EPA 608	0.20	0.2
123. F	РСВ-1221	ND	EPA 608	0.20	0.2
124. P	РСВ-1232	ND	EPA 608	0.20	0.2
125. P	РСВ-1248	ND	EPA 608	0.20	0.2
126. P	РСВ-1260	ND	EPA 608	0.20	0.2
127. P	РСВ-1016	ND	EPA 608	0.20	0.2
128. T	roxaphene	ND	EPA 608	0.30	0.3

-

The Arth are do

ARKANSAS Department of Environmental Quality PPS REQUIREMENTS

1. Name of facility:

Georgia-Pacific LLC, Crossett Paper Operations

2. Name, address and telephone number of laboratory:

PPS w/o TCDDTCDDAmerican InterplexSGS Analytical Perspectives8600 Kanis Road5500 Business DriveLittle Rock, AR 72204Wilmington, NC 28405(501) 224-5060(910) 350-1903

- 3. Is the lab certified by the State of Arkansas? Yes _X____ No ____
- 4. What are the certification dates?

Issued data 02/28/2014 Expire date 02/28/2015

5. Is the laboratory certified for all the parameters?

YES X____ NO ____ (Explain)

6. Date and time of samples collected:

<u>10/21/14, 9:28 am</u>

7. Date and time samples were received in the laboratory:

<u>10/21/14, 15:55 pm</u>

8. Sample location (Outfall No.):

<u>SMS_002</u>

A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA

.

South of the second state
9. Samples collected by:

Name Rachel Johnson/Danny Rice

Title Environmental Engineer/Environmental Specialist

Telephone <u>870-567-8170</u>

10. I certify under penalty of law that this document and all attachments were prepared under my direction of supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information submitted is, to the best of my knowledge and belief, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

<u>Gary W. Kaiser</u>	<u>Vice-President of Manufacturing</u>
Printed Name of person signing	Title
(Tang Kaisez	5-4-15
signature)	Date signed
List all attachments to this form:	

		LAB	LABORATORY ANALYSIS			
	MET4	ALS AND CYANIDE	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/l)	REQUIRED MQL (μg/1)
1.	Antimony	(Total), Recoverable	ND	EPA 200.8	60	60
2.	Arsenic	(Total), Recoverable	1.7	EPA 200.8	0.5	0.5
3.	Beryllium	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
4.	Cadmium	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
5.	Chromium	(Total), Recoverable	ND	EPA 200.8	10	10
7.	Chromium	(6+), Dissolved	ND	SM 3500- Cr_B	10	10
8.	Copper	(Total), Recoverable	18	EPA 200.8	0.5	0.5
9.	Lead	(Total), Recoverable	NĎ	EPA 200.8	0.5	0.5
10.	Mercury	(Total), Recoverable	0.009	EPA 245.1	0.005	0.005
12.	Nickel	(Total), Recoverable	9.2	EPA 200.8	0.5	0.5
<u>13.</u>	Selenium	(Total), Recoverable	ND	EPA 200.8	5	5
14.	Silver	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
<u>15.</u>	Thallium	(Total), Recoverable	ND	EPA 200.8	0.5	0.5
16.	Zinc	(Total), Recoverable	20	EPA 200.8	20	20
129.	Phenols, To	otal Recoverable	17	EPA 420.1	5	5
_17.	Cyanide	(Total), Recoverable	ND	SM 4500- CN C,E	10	10

-2

1. 1.

and the second

2.4

4

24

	LAI			
DIOXIN	<i>RESULTS</i> (μ <i>g/</i> 1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (μg/1)
18. 2,3,7,8-Tetrachloro-debenzo-p- dioxin (TCDD)	ND	1613	0.000010	0.00001

			LABORATORY ANALYSIS		
VOLATILE (COMPOUNDS	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (μg/1)
19. Acrolein		ND	EPA 624	50	50
20. Acrylonitrile		ND	EPA 624	20	20
21. Benzene		ND	EPA 624	10	10
22. Bromoform	·	ND	EPA 624	10	10
23. Carbon Tetrach1	oride	ND	EPA 624	2.0	2
24. Chlorobenzene		ND	EPA 624	10	10
25. Chlorodibromome	thane	ND	EPA 624	10	10
26. Chloroethane		ND	EPA 624	50	50
27. 2-Chloroethyl v	inyl ether	ND	EPA 624	10	10
28. chloroform		ND	EPA 624	10	10
29. Dichlorobromome	thane	ND	EPA 624	10	10
30. 1,1-Dichloroeth	ane	ND	EPA 624	10	10
31. 1,2-Dichloroeth	ane	ND	EPA 624	10	10
32. 1,1-Dichloroeth	ylene	ND	EPA 624	10	10
33. 1,2-Dichloropro	pane	ND	EPA 624	10	10
34. 1,3-Dichloropro	pylene	ND	EPA 624	10	10
35. Ethylbenzene		ND	EPA 624	10	10
36. Methyl Bromide	[Bromomethane]	ND	EPA 624	50	50
37. Methyl Chloride	[Chloromethane]	ND	EPA 624	50	50
38. Methylene Chlor	ide	ND	EPA 624	20	20
39. 1,1,2,2-Tetrach	loroethane	ND	EPA 624	10	10
40. Tetrachloroethy	lene	ND	EPA 624	10	
41. Toluene		ND	EPA 624	10	
42. 1,2-trans-Dichle	proethylene	ND	EPA 624	10	10
43. 1,1,1-Trichlorod	ethane	ND	EPA 624	10	10
44. 1,1,2-Trichloro	ethane	ND	EPA 624	10	10
45. Trichloroethyle	1e	ND	EPA 624	10	10
46. Vinyl Chloride		ND	EPA 624	10	10

 $\sigma \sim \tau_p$

Second The

.

N'ya

ć

Ω − Jene

2

1

17 M

		LAI			
	ACID COMPOUNDS	RESULTS (μg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (µg/1)
47.	2-Chlorophenol	ND	EPA 625	10	10
48.	2,4-Dichlorophenol	ND	EPA 625	10	10
49.	2,4-Dimethylphenol	ND	EPA 625	10	10
50.	4.6-Dinitro-o-Cresol [2 methyl 4,6-dinitrophenol	ND	EPA 625	50	50
51.	2,4-Dinitrophenol	ND	EPA 625	50	50
52.	2-Nitrophenol	ND	EPA 625	20	20
53.	4-Nitrophenol	ND	EPA 625	50	50
54.	P-Chloro-m-Cresol [4 chloro-3-methylphenol]	ND	EPA 625	10	10
55.	Pentachlorophenol	ND	EPA 625	5.0	5
56.	Pheno 1	ND	EPA 625	10	10
57.	2,4,6-Trichlorophenol	ND	EPA 625	10	10

i seta 🗧

a free states

		LAI	BORATORY ANAL	YSIS	
	BASE/NEUTRAL COMPOUNDS	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/l)	REQUIRED MQL (μg/1)
58.	Acenaphthene	ND	EPA 625	10	10
59.	Acenaphthylene	ND	EPA 625	10	10
60.	Anthracene	ND	EPA 625	10	10
61.	Benzidine	ND	EPA 625	50	50
62.	Benzo(a)anthracene	ND	EPA 625	5.0	5
63.	Benzo(a)pyrene	ND	EPA 625	5.0	5
64.	3,4-Benzofluoranthene	ND	EPA 625	10	10
65.	Benzo(ghi)perylene	ND	EPA 625	20	20
66.	Benzo(k)fluoranthene	ND	EPA 625	5.0	5
67.	Bis(2-chloroethoxy) methane	ND	EPA 625	10	10
68.	Bis(2-chloroethyl) ether	ND	EPA 625	10	10
69.	Bis(2-chloroisopropyl) ether	ND	EPA 625	10	10
70.	Bis(2-ethylhexyl) phthalate	190	EPA 625	50	10
71.	4-Bromophenyl phenyl ether	ND	EPA 625	10	10
72.	Butyl benzyl phthalate	ND	EPA 625	10	10
73.	2-Chloronapthalene	ND	EPA 625	10	10
74.	4-Chlorophenyl phenyl ether	ND	EPA 625	10	10
75.	Chrysene	ND	EPA 625	5.0	5
76.	Dibenzo (a,h) anthracene	ND	EPA 625	5.0	5
77.	1,2-Dichlorobenzene	ND	EPA 624	10	10
78.	1,3-Dichlorobenzene	ND	EPA 624	10	10
<i>79</i> .	1,4-Dichlorobenzene	ND	EPA 624	10	10
80.	3,3'-Dichlorobenzidine	ND	EPA 625	5.0	5
81.	Diethyl Phthalate	ND	EPA 625	10	10
82.	Dimethyl Phthalate	ND	EPA 625	10	10
83.	Di-n-Butyl Phthalate	ND	EPA 625	10	10
84.	2,4-Dinitrotoluene	ND	EPA 625	10	10
85.	2,6-Dinitrotoluene	ND	EPA 625	10	10
86.	Di-n-octyl Phthalate	ND	EPA 625	10	10

AS A STATUS

the state of the

C. S. Star

.

÷

:

Sec. Sec.

13 A.

		LAI	LABORATORY ANALYSIS			
	BASE/NEUTRAL COMPOUNDS	RESULTS (µg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (μg/1)	
87.	1,2-Diphenylhydrazine	ND	EPA 625	20	20	
89.	Fluorene	ND	EPA 625	10	10	
90.	Hexachlorobenzene	ND	EPA 625	5.0	5	
91.	Hexachlorobutadiene	ND	EPA 625	10	10	
92.	Hexachlorocyclopentadiene	ND	EPA 625	10	10	
93.	Hexachloroethane	ND	EPA 625	20	20	
94.	Indeno (1,2,3-cd) pyrene (2,3-o-phenylene pyrene)	ND	EPA 625	5.0	5	
<u>95.</u>	Isophorone	ND	EPA 625	10	10	
96.	Naphthalene	ND	EPA 625	10	10	
97.	Nitrobenzene	ND	EPA 625	10	10	
98.	N-nitrosodimethylamine	ND	EPA 625	50	50	
<i>99.</i>	N-nitrosodi-n-propylamine	ND	EPA 625	20	20	
100.	N-nitrosodiphenylamine	ND	EPA 625	20	20	
101.	Phenanthrene	ND	EPA 625	10	10	
<u>102.</u>	Pyrene	ND	EPA 625	10	10	
103.	1,2,4-Trichlorobenzene	ND	EPA 625	10	10	

WAY.

ę,

÷.,

iler ar

2 2

i an de

NE ANA

A Course

	LA	BORATORY ANAL	YSIS	<u>, </u>
PESTICIDES	RESULTS (μg/1)	APPROVED EPA METHOD USED	DETECTION LEVEL ACHIEVED (µg/1)	REQUIRED MQL (µg/1)
104. Aldrin	ND	EPA 608	0.010	0.01
105. Аlpha-внс	ND	EPA 608	0.050	0.05
106. Beta-BHC	ND	EPA 608	0.050	0.05
107. Gamma-BHC	ND	EPA 608	0.050	0.05
108. Delta-BHC	ND	EPA 608	0.050	0.05
109. Chlordane	ND	EPA 608	0.20	0.2
<u>110. 4,4'-DDT</u>	ND	EPA 608	0.020	0.02
111. 4,4'-DDE (p,p-DDX)	ND	EPA 608	0.10	0.1
112. 4,4'-DDD 9(p,p-TDE)	ND	EPA 608	0.10	0.1
<u>113. Dieldrin</u>	ND	EPA 608	0.020	0.02
_114. Alpha-endosulfan	ND	EPA 608	0.010	0.01
<u>115. Beta-endosulfan</u>	ND	EPA 608	0.020	0.02
116. Endosulfan sulfate	ND	EPA 608	0.10	0.1
<u>117. Endrin</u>	ND	EPA 608	0.020	0.02
118. Endrin aldehyde	ND	EPA 608	0.10	0.1
119. Heptachlor	ND	EPA 608	0.010	0.01
120. Heptachlor epoxide (BHC-hexachlorocyclohexane)	ND	EPA 608	0.010	0.01
130. Chlorpyrifos	ND	EPA 608	0.070	0.07
121. РСВ-1242	ND	EPA 608	0.20	0.2
122. РСВ-1254	ND	EPA 608	0.20	0.2
123. РСВ-1221	ND	EPA 608	0.20	0.2
124. РСВ-1232	ND	EPA 608	0.20	0.2
125. РСВ-1248	ND	EPA 608	0.20	0.2
126. РСВ-1260	ND	EPA 608	0.20	0.2
127. РСВ-1016	ND	EPA 608	0.20	0.2
128. Toxaphene	ND	EPA 608	0.30	0.3

reprint P

1

R.

150

ŧ

ı

a the states for a

R

Disclaimer

This is an updated PDF document that allows you to type your information directly into the form, print it, and save the completed form.

Note: This form can be viewed and saved only using Adobe Acrobat Reader version 7.0 or higher, or if you have the full Adobe Professional version.

Instructions:

- 1. Type in your information
- 2. Save file (if desired)
- 3. Print the completed form
- 4. Sign and date the printed copy
- 5. Mail it to the directed contact.

United States Environmental Protection Agency Office of Enforcement Washington, DC 20460 EPA Form 3510-2C Revised August 1990 Previous editions are obsolete

Permits Division

€PA

Application Form 2C – Wastewater Discharge Information

Consolidated Permits Program

This form must be completed by all persons applying for an EPA permit to discharge wastewater (*existing manufacturing*, *commercial*, *mining*, *and silvicultural operations*).

Paperwork Reduction Act Notice

The public reporting burden for this collection of information is estimated to average 33 hours per response. This estimate includes time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the collection of information. Send comments regarding the burden estimate or any other aspect of this collection of information to the Chief, Information Policy Branch (PM-223), US Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, and to the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503, marked **Attention:** Desk Officer for EPA.

States and the states and the second

INSTRUCTIONS – FORM 2c Application for Permit to Discharge Wastewater EXISTING MANUFACTURING, COMMERCIAL, MINING. AND SILVICULTURAL OPERATIONS

This form must be completed by all applicants who check "yes" to item II-C in Form 1.

Public Availability of Submitted Information.

Your application will not be considered complete unless you answer every question on this form and on Form 1. If an item does not apply to you, enter "NA" (*for not applicable*) to show that you considered the question.

You may not claim as confidential any information required by this form or Form 1, whether the information is reported on the forms or in an attachment. This information will be made available to the public upon request.

Any information you submit to EPA which goes beyond that required by this form or Form 1 you may claim as confidential, but claims for information which is effluent data will be denied. If you do not assert a claim of confidentiality at the time of submitting the information, EPA may make the information public without further notice to you. Claims of confidentiality will be handled in accordance with EPA's business confidentiality regulations at 40 CFR Part 2.

Definitions

All significant terms used in these instructions and in the form are defined in the glossary found in the General Instructions which accompany Form 1.

EPA ID Number

Fill in your EPA Identification Number at the top of each page of Form 2c. You may copy this number directly from item I of Form 1.

item i

You may use the map you provided for item XI of Form 1 to determine the latitude and longitude of each of your outfalls and the name of the receiving water.

item II-A

The line drawing should show generally the route taken by water in your facility from intake to discharge. Show all operations contributing wastewater, including process and production areas, sanitary flows, cooling water, and stormwater runoff. You may group similar operations into a single unit, labeled to correspond to the more detailed listing in item II-B. The water balance should show average flows. Show all significant losses of water to products, atmosphere, and discharge. You should use actual measurements whenever available; otherwise use your best estimate. An example of an acceptable line drawing appears in Figure 2c-1 to these instructions.

Item II-B

List all sources of wastewater to each outfall. Operations may be described in general terms (*for example, "dye-making reactor" or "distillation tower"*). You may estimate the flow contributed by each source if no date are available. For stormwater discharges you may estimate the average flow, but you must indicate the rainfall event upon which the estimate is based and the method of estimation. For each treatment unit, indicate its size, flow rate, and retention time, and describe the ultimate disposal of any solid or liquid wastes not discharged. Treatment units should be listed in order and you should select the proper code from Table 2c-1 to fill in column 3-b for each treatment unit. Insert "XX" into column 3-b if no code corresponds to a treatment unit you list. If you are applying for a permit for a privately owned treatment works, you must also identify all of your contributors in an attached listing.

Item II-C

A discharge is intermittent unless it occurs without interruption during the operating hours of the facility, except for infrequent shutdowns for maintenance, process changes, or other similar activities. A discharge is seasonal if it occurs only during certain parts of the year. Fill in every applicable column in this item for each source of intermittent or seasonal discharges. Base your answers on actual data whenever available; otherwise, provide your best estimate. Report the highest daily value for flow rate and total volume in the "Maximum Daily" columns (columns 4-a-2 and 4-b-2). Report the average of all daily values measured during days when discharge occurred within the last year in the "Long Term Average" columns (columns 4-a-1 and 4-b-1).

item III-A

- 4 JL

All effluent guidelines promulgated by EPA appear in the Federal Register and are published annually in 40 CFR Subchapter N. A guideline applies to you if you have any operations contributing process wastewater in any subcategory covered by a BPT, BCT, or BAT guideline. If you are unsure whether you are covered by a promulgated effluent guideline, check with your EPA Regional office (*Table 1 in the Form 1 instructions*). You must check "yes" if an applicable effluent guideline has been promulgated, even if the guideline limitations are being contested in court. If you believe that a promulgated effluent guideline has been remanded for reconsideration by a court and does not apply to your operations, you may check "no."

Item III-B

An effluent guideline is expressed in terms of production (*or other measure of operation*) if the limitation is expressed as mass of pollutant per operational parameter; for example, "pounds of BOD per cubic foot of logs from which bark is removed," or "pounds of TSS per megawatt hour of electrical energy consumed by smelting furnace." An example of a guideline not expressed in terms of a measure of operation is one which limits the concentration of pollutants.

Item III-C

This item must be completed only if you checked "yes" to item III-B. The production information requested here is necessary to apply effluent guidelines to your facility and you cannot claim it as confidential. However, you do not have to indicate how the reported information was calculated. Report quantities in the units of measurement used in the applicable effluent guideline. The production figures provided must be based on actual daily production and not on design capacity or on predictions of future operations. To obtain alternate limits under 40 CFR 122.45(b)(2)(ii), you must define your maximum production is substantially below maximum production capability and that there is a reasonable potential for an increase above actual production during the duration of the permit.

Item IV-A

If you check "yes" to this question, complete all parts of the chart, or attach a copy of any previous submission you have made to EPA containing same information.

Item IV-B

You are not required to submit a description of future pollution control projects if you do not wish to or if none is planned.

Item V-A, B, C, and D

The items require you to collect and report data on the pollutants discharged for each of your outfalls. Each part of this item addresses a different set of pollutants and must be completed in accordance with the specific instructions for that part. The following general instructions apply to the entire item.

General Instructions

Part A requires you to report at least one analysis for each pollutant listed. Parts B and C require you to report analytical data in two ways. For some pollutants, you may be required to mark "X" in the "Testing Required" column (column 2-a, Part C), and test (sample and analyze) and report the levels of the pollutants in your discharge whether or not you expect them to be present in your discharge. For all others, you must mark "X" in either the "Believe Present" column or the "Believe Absent" column (columns 2-a or 2-b, Part B, and columns 2-b or 2-c, Part C) based on your best estimate, and test for those which you believe to be present. (See specific instructions on the form and below for Parts A through D.) Base your determination that a pollutant is present in or absent from your discharge on your

Item V-A, B, C, and D (continued)

knowledge of your raw materials, maintenance chemicals, intermediate and final products and byproducts, and any previous analyses known to you of your effluent or similar effluent. (For example, if you manufacture pesticides, you should expect those pesticides to be present in contaminated stormwater runoff.) If you would expect a pollutant to be present solely as a result of its presence in your intake water, you must mark "Believe Present" but you are not required to analyze for that pollutant. Instead, mark an 'X' In the "Intake" column.

Reporting. All levels must be reported as concentration and as total mass. You may report some or all of the required data by attaching separate sheets of paper instead of filling out pages V-I to V-9 if the separate sheets contain all the required information in a format which is consistent with pages V-I to V-9 in spacing and in identification of pollutants and columns. (For example, the data system used in your GC/MS analysis may be able to print data in the proper format.) Use the following abbreviations in the columns headed "Units" (column 3, Part A, and column 4, Parts B and C).

Concentration	Mass
ppmparts per million mg/lmilligrams per liter ppbparts per billion ug/lmicrograms per liter	lbspounds tontons (English tons) mgmilligrams ggrams kgkilograms
	Ttonnes (metric tons)

All reporting of values for metals must be in terms of "total recoverable metal," unless:

- (1) An applicable, promulgated effluent limitation or standard specifies the limitation for the metal in dissolved, valent, or total form: or
- All approved analytical methods for the metal inherently (2) measure only its dissolved form (e.g., hexavalent chromium); or
- (3) The permitting authority has determined that in establishing case-by-case limitations it is necessary to express the limitations on the metal in dissolved, valent, or total form to carry out the provisions of the CWA.

If you measure only one daily value, complete only the "Maximum Daily Values" columns and insert '1' into the "Number of Analyses" column (columns 2-a and 2-d, Part A, and column 3-a, 3-d, Parts B and C). The permitting authority may require you to conduct additional analyses to further characterize your discharges. For composite samples, the daily value is the total mass or average concentration found in a composite sample taken over the operating hours of the facility during a 24-hour period; for grab samples, the daily value is the arithmetic or flow-weighted total mass or average concentration found in a series of at least four grab samples taken over the operating hours of the facility during a 24-hour period.

If you measure more than one daily value for a pollutant and those values are representative of your wastestream, you must report them. You must describe your method of testing and data analysis. You also must determine the average of all values within the last year and report the concentration and mass under the "Long Term Average Values" columns (column 2-c, Part A, and column 3-c, Parts B and C), and the total number of daily values under the "Number of Analyses" columns (column 2-d, Part A, and columns 3-d, Parts B and C). Also, determine the average of all daily values taken during each calendar month, and report the highest average under the "Maximum 30-day Values" columns (column 2-c, Part A, and column 3-b, Parts B and C).

B. Sampling: The collection of the samples for the reported analyses should be supervised by a person experienced in performing sampling of industrial wastewater. You may contact your EPA or State permitting authority for detailed guidance on sampling techniques and for answers to specific questions. Any specific requirements contained in the applicable analytical methods should be followed for sample containers, sample preservation, holding

times, the collection of duplicate samples, etc. The time when you sample should be representative of your normal operation, to the extent feasible, with all processes which contribute wastewater in normal operation, and with your treatment system operating properly with no system upsets. Samples should be collected from the center of the flow channel, where turbulence is at a maximum, at a site specified in your present permit, or at any site adequate for the collection of a representative sample.

For pH, temperature, cyanide, total phenols, residual chlorine, oil and grease, and fecal coliform, grab samples must be used. For all other pollutants 24-hour composite samples must be used. However, a minimum of one grab sample may be taken for effluents from holding ponds or other impoundments with a retention period of greater than 24 hours. For stormwater discharges a minimum of one to four grab samples may be taken, depending on the duration of the discharge. One grab must be taken in the first hour (or less) of discharge, with one additional grab (up to a minimum of four) taken in each succeeding hour of discharge for discharges lasting four or more hours. The Director may waive composite sampling for any outfall for which you demonstrate that use of an automatic sampler is infeasible and that a minimum of four grab samples will be representative of your discharge.

Grab and composite samples are defined as follows:

Grab sample: An individual sample of at least 100 milliliters collected at a randomly-selected time over a period not exceeding 15 minutes.

Composite sample: A combination of at least 8 sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over a 24 hour period. The composite must be flow proportional; either the time interval between each aliquot or the volume of each aliquot must be proportional to either the stream flow at the time of sampling or the total stream flow since the collection of the previous aliquot. Aliquots may be collected manually or automatically. For GC/MS Volatile Organic Analysis (VOA), aliquots must be combined in the laboratory immediately before analysis. Four (4) (rather than eight) aliquots or grab samples should be collected for VOA. These four samples should be collected during actual hours of discharge over a 24hour period and need not be flow proportioned. Only one analysis is required.

The Agency is currently reviewing sampling requirements in light of recent research on testing methods. Upon completion of its review, the Agency plans to propose changes to the sampling requirements.

Data from samples taken in the past may be used, provided that:

All data requirements are met;

Sampling was done no more than three years before submission; and

All data are representative of the present discharge.

Among the factors which would cause the data to be unrepresentative are significant changes in production level, changes in raw materials, processes, or final products, and changes in wastewater treatment. When the Agency promulgates new analytical methods in 40 CFR Part 136, EPA will provide information as to when you should use the new methods to generate data on your discharges. Of course, the Director may request additional information, including current quantitative data, if she or he determines it to be necessary to assess your discharges.

C. Analysis: You must use test methods promulgated in 40 CFR Part 136; however, if none has been promulgated for a particular pollutant, you may use any suitable method for measuring the level of the pollutant in your discharge provided that you submit a description of the method or a reference to a published method. Your description should include the sample holding time, preservation techniques, and the quality control measures which you used. If you have two or more substantially identical outfalls, you may request permission from your permitting authority to sample and analyse only one outfall and submit the results of the analysis for other substantially identical outfalls. If your request is granted by the

Item V-A, B, C, and D (continued)

D. Reporting of Intake Data: You are not required to report data under the "Intake" columns unless you wish to demonstrate your eligibility for a "net" effluent limitation for one or more pollutants, that is, an effluent limitation adjusted by subtracting the average level of the pollutant(s) present in your intake water, NPDES regulations allow net limitations only in certain circumstances. To demonstrate your eligibility, under the "Intake" columns report the average of the average of the average of analyses on your intake water (*if your water is treated before use, test the water after it is treated*), and discuss the requirements for a net limitation with your permitting authority.

Part V-A

Part V-A must be completed by all applicants for all outfalls, including outfalls containing only noncontact cooling water or storm runoff. However, at your request, the Director may waive the requirement to test for one or more of these pollutants, upon a determination that available information is adequate to support issuance of the permit with less stringent reporting requirements for these pollutants. You also may request a waiver for one or more of these pollutants for your category or subcategory from the Director, Office of Water Enforcement and Permits. See discussion in General Instructions to tem V for definitions of the columns in Part A. The "Long Term Average Values" column (*column 2-c*) and "Maximum 30-day Values" column (*column 2-b*) are not compulsory but should be filled out if data are available.

Use composite samples for all pollutants in this Part, except use grab samples for pH and temperature. See discussion in General Instructions to Item V for definitions of the columns in Part A. The "Long Term Average Values" column (*column 2-c*) and "Maximum 30-Day Values" column (*column 2-b*) are not compulsory but should be filled out if data are available.

Part V-B

Part V-B must be completed by all applicants for all outfalls, including outfalls containing only noncontact cooling water or storm runoff. You must report quantitative data if the pollutant(s) in question is limited in an effluent limitations guideline either directly, or indirectly but expressly through limitation on an indicator (e.g., use of TSS as an indicator to control the discharge of iron and aluminum). For other discharged pollutants you must provide quantitative data or explain their presence in your discharge. EPA will consider requests to the Director of the Office of Water Enforcement and Permits to eliminate the requirement to test for pollutants for an industrial category or subcategory. Your request must be supported by data representative of the industrial category or subcategory in question. The data must demonstrate that individual testing for each applicant is unnecessary, because the facilities in the category or subcategory discharge substantially identical levels of the pollutant or discharge the pollutant uniformly at sufficiently low levels. Use composite samples for all pollutants you analyze for in this part, except use grab samples for residual chlorine, oil and grease, and fecal coliform. The "Long Term Average Values" column (column 3-c) and "Maximum 30-day Values" column (column 3-b) are not compulsory but should be filled out if data are available.

Part V-C

Table 2c-2 lists the 34 "primary" industry categories in the lefthand column. For each outfall, if any of your processes which contribute wastewater falls into one of those categories, you must mark "X" in "Testing Required" column (*column 2-a*) and test for (I) all of the toxic metals, cyanide, and total phenols, and (2) the organic toxic pollutants contained in Table 2c-2 as applicable to your category, unless you qualify as a small business (*see below*). The organic toxic pollutants are listed by GC/MS fractions on pages V-4 to V-9 in Part V-C. For example, the Organic Chemicals Industry has an asterisk in all our fractions; therefore, applicants in this category must test for all organic toxic pollutant. If you are applying for a permit for a privately owned

treatment works, determine your testing requirements on the basis of the industry categories of your contributors. When you determine which industry category you are in to find your testing requirements, you are not determining your category for any other purpose and you are not giving up your right to challenge your inclusion in that category (for example, for deciding whether an effluent guideline is applicable) before your permit is issued. For all other cases (secondary industries, nonprocess wastewater outfalls, and nonrequired GC/MS fractions), you must mark "X" in either the "Believed Present" column (column 2-b) or the "Believed Absent" column (column 2-c) for each pollutant. For every pollutant you know or have reason to believe is present in your discharge in concentrations of 10 ppb or greater, you must report quantitative data. For acrolein, acrylonitrile, 2, 4 dinitrophenol, and 2-methyl-4, 6 dinitrophenol, where you expect these four pollutants to be discharged in concentrations of 100 ppb or greater, you must report quantitative data. For every pollutant expected to be discharged in concentrations less than the thresholds specified above, you must either submit quantitative data or briefly describe the reasons the pollutant is expected to be discharged. At your request the Director, Office of Water Enforcement and Permits, may waive the requirement to test for pollutants for an industrial category or subcategory. Your request must be supported by data representatives of the industrial category or subcategory in question. The data must demonstrate that individual testing for each applicant is unnecessary, because the facilities in question discharge substantially identical levels of the pollutant, or discharge the pollutant uniformly at sufficiently low levels. If you qualify as a small business (see below) you are exempt from testing for the organic toxic pollutants, listed on pages V-4 to V-9 in Part C. For pollutants in intake water, see discussion in General Instructions to this item. The "Long Term Average Values" column (column 3-c) and "Maximum 30-day Values" column (column 3-b) are not compulsory but should be filled out if data are available. You are required to mark "Testing Required" for dioxin if you use or manufacture one of the following compounds:

- (a) 2,4,5-trichlorophenoxy acetic acid, (2,4,5-T);
- (b) 2-(2,4,5-trichlorophenoxy) propanoic acid, (Silvex, 2,4,5-TP)
- (c) 2-(2,4,5-trichlorophenoxy) ethyl 2,2-dichloropropionate, (Erbon);
- (d) 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate, (Ronnel);
- (e) 2,4,5,-trichlorophenol, (TCP); or
- (f) hexachlorophene, (HCP).

If you mark "Testing Required" or "Believed Present," you must perform a screening analysis for dioxins, using gas chromotography with an electron capture detector. A TCDD standard for quantitation is not required. Describe the results of this analysis in the space provided; for example, "no measurable baseline deflection at the retention time of TCDD" or "a measurable peak within the tolerances of the retention time of TCDD." The permitting authority may require you to perform a quantitative analysis if you report a positive result. The Effluent Guidelines Division of EPA has collected and analyzed samples from some plants for the pollutants listed in Part C in the course of its BAT guidelines development program. If your effluents are sampled and analyzed as part of this program in the last three years, you may use these data to answer Part C provided that the permitting authority approves, and provided that no process change or change in raw materials or operating practices has occurred since the samples were taken that would make the analyses unrepresentative of your current discharge.

Small Business Exemption: If you qualify as a "small business", you are exempt from the reporting requirements for the organic toxic pollutants, listed on pages V-4 to V-9 in Part C. There are two ways in which you can qualify as a "small business." If your facility is a coal mine, and if your probable total annual production is less than 100,000 tons per year, you may submit past production data or estimated future production (*such as a schedule of estimated total production under 30 CFR § 795.14(c)*) instead of conducting analyses for the organic toxic pollutants. If your facility is not a coal mine, and if your gross total annual sales for the most recent three years average less than \$100,000 per year (*in second quarter 1980*)

Item V-A, B, C, and D (continued)

dollars), you may submit sales data for those years instead of conducting analyses for the organic toxic pollutants. The production or sales data must be for the facility which is the source of the discharge. The data should not be limited to production or sales for the process or processes which contribute to the discharge, unless those are the only processes at your facility. For sales data, in situations involving intracorporate transfer of goods and services, the transfer price per unit should approximate market prices for those goods and services as closely as possible. Sales figures for years after 1980 should be indexed to the second quarter of 1980 by using the gross national product price deflator (second quarter of 1980=100). This index is available in National Income and Product Accounts of the United States (Department of Commerce, Bureau of Economic Analysis).

Part V-D

List any pollutants in Table 2c-3 that you believe to be present and explain why you believe them to be present. No analysis is required, but if you have analytical data, you must report it.

Note: Under 40 CFR 117.12(a)(2), certain discharges of hazardous substances (*listed in Table 2c-4 of these instructions*) may be exempted from the requirements of section 311 of CWA, which establishes reporting requirements, civil penalties and liability for cleanup costs for spills of oil and hazardous substances. A discharge of a particular substance may be exempted if the origin, source, and amount of the discharged substances are identified in the NDPES permit application or in the permit, if the permit contains a requirement for treatment of the discharge, and if the treatment is in place. To apply for an exclusion of the discharge of any hazardous substance from the requirements of section 311, attach additional sheets of paper to your form, setting forth the following information:

- 1. The substance and the amount of each substance which may be discharged.
- 2. The origin and source of the discharge of the substance.
- 3. The treatment which is to be provided for the discharge by:
 - An onsite treatment system separate from any treatment system treating your normal discharge;
 - A treatment system designed to treat your normal discharge and which is additionally capable of treating the amount of the substance identified under paragraph 1 above; or
 - c. Any combination of the above.

See 40 CFR §117.12(a)(2) and (c) published on August 29, 1979, in 44 FR 50766, or contact your Regional Office (*Table 1 on Form 1, Instructions*), for further information on exclusions from section 311.

Item VI

This requirement applies to current use or manufacture of a toxic pollutant as an intermediate or final product or byproduct. The Director may waive or modify the requirement if you demonstrate that it would be unduly burdensome to identify each toxic pollutant and the Director has adequate information to issue your permit. You may not claim this information as confidential; however, you do not have to distinguish between use or production of the pollutants or list the amounts.

Item Vil

1. 3.1

Self explanatory. The permitting authority may ask you to provide additional details after your application is received.

Item IX

The Clean Water Act provides for severe penalties for submitting false information on this application form.

Section 309(c)(2) of the Clean Water Act provides that "Any person who knowingly makes any false statement, representation, or certification in any application,... shall upon conviction, be punished by a fine of not more than \$10,000 or by imprisonment for not more than six months, or by both."

40 CFR Part 122.22 requires the certification to be signed as follows:

(A) For a corporation: by a responsible corporate official. For purposes of this section, a responsible corporate official means (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or (ii) the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25,000,000 (*in second-quarter 1980 dollars*), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

Note: EPA does not require specific assignments or delegation of authority to responsible corporate officers identified in §122.22(a)(1)(i). The Agency will presume that these responsible corporate officers have the requisite authority to sign permit applications unless the corporation has notified the director to the contrary. Corporate procedures governing authority to sign permit applications may provide for assignment or delegation to applicable corporate position under §122.22(a)(1)(ii) rather than to specific individuals.

(B) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or

(C) For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal Agency includes (i) the chief executive officer of the Agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the Agency (e.g., Regional Administrators of EPA). Applications for Group II stormwater dischargers may be signed by a duly authorized representative (as defined in 40 CFR 122.22(b)) of the individuals identified above.

CODES FOR TREATMENT UNITS

my sa

. . .

ζ.

PHYSICAL TREATMENT PROCESSES

1–A Ammonia Stripping	1–	M Grit Remova	I
1–B Dialysis	1-	N Microstrainir	ng
1–C Diatomaceous Earth F	iltration 1-	OMixing	•
1–D Distillation	1–	P Moving Bed	Filters
1-E Electrodialysis	1–	Q Multimedia F	Filtration
1–F Evaporation	1-	R Rapid Sand	Filtration
1–G Flocculation	1–	S Reverse Osi	mosis (Hyperfiltration)
1–H Flotation	1–	TScreening	
1–I Foam Fractionation	1-	U Sedimentatio	on (Settling)
1–J Freezing	1–	V Slow Sand F	iltration
1-K Gas-Phase Separation	n 1–	W Solvent Extr	action
1-L Grinding (Comminutor	s) 1–	X Sorption	

.....

e i

5

ř.

and the second

CHEMICAL TREATMENT PROCESSES

2–A (Carbon Adsorption	2–G	Disinfection (Ozone)
2–B C	Chemical Oxidation	2–H	Disinfection (Other)
2–C	Chemical Precipitation	2-1	Electrochemical Treatment
2–D (Coagulation	2–J	Ion Exchange
2–E [Dechlorination	2–K	Neutralization
2F E	Disinfection (Chlorine)	2–L	Reduction

BIOLOGICAL TREATMENT PROCESSES

3–A Activated Sludge	3–E Pre-Aeration
3–B Aerated Lagoons	3–F Spray Irrigation/Land Application
3–C Anaerobic Treatment	3–G Stabilization Ponds
3–D Nitrification–Denitrification	3–H Trickling Filtration

OTHER PROCESSES

4–A Discharge to Surface Water	4–C Reuse/Recycle of Treated Efflue	nt
4–B Ocean Discharge Through Outfall	4-D Underground Injection	

SLUDGE TREATMENT AND DISPOSAL PROCESSES

5–A	Aerobic Digestion	5–M	Heat Drying
5–В	Anaerobic Digestion	5–N	
5–C	Belt Filtration	5–0	Incineration
5–D	Centrifugation	5–P	Land Application
5–E	Chemical Conditioning	5–Q	
5F	Chlorine Treatment		Pressure Filtration
5–G	Composting	5–S	Pyrolysis
5–H	Drying Beds	5-T	
5 –I	Elutriation		Vacuum Filtration
5–J	Flotation Thickening	5–V	
5–K	Freezing	5–W	Wet Oxidation
5–L	Gravity Thickening		

TESTING REQUIREMENTS FOR ORGANIC TOXIC POLLUTANTS INDUSTRY CATEGORY*

		GC/MS	S FRACTION ¹	
	Volatile	Acid	Base/Neutral	Pesticide
Adhesives and sealants	x	х	x	_
Aluminum forming	х	х	х	_
Auto and other laundries	х	х	х	х
Battery manufacturing	х	-	х	_
Coal mining	х	х	х	х
Coil coating	х	х	X	_
Copper forming	х	х	х	_
Electric and electronic compounds	х	X	X	х
Electroplating	х	X	X	_
Explosives manufacturing	-	X	X	_
Foundries	х	х	X	_
Gum and wood chemicals	х	х	X	х
Inorganic chemicals manufacturing	х	х	X	-
Iron and steel manufacturing	х	х	x	-
Leather tanning and finishing	х	х	х	х
Mechanical products manufacturing	х	х	x	_
Nonferrous metals manufacturing	х	х	Х	х
Ore mining	х .	х	х	X
Organic chemicals manufacturing	х	х	x	X
Paint and ink formulation	х	х	Х	X
Pesticides	х	х	х	х
Petroleum refining	х	х	х	X
Pharmaceutical preparations	х	х	х	_
Photographic equipment and supplies	х	х	X	х
Plastic and synthetic materials manufacturing	х	х	X	x
Plastic processing	х	_	_	-
Porcelain enameling	х	-	х	х
Printing and publishing	х	х	X	x
Pulp and paperboard mills	х	х	X	x
Rubber processing	х	х	х	_
Soap and detergent manufacturing	х	х	X	-
Steam electric power plants	х	х	х	-
Textile mills	х	х	Х	х
Timber products processing	х	х	х	X

*See note at conclusion of 40 CFR Part 122, Appendix D (1983) for explanation of effect of suspensions on testing requirements for primary industry categories. ¹The pollutants in each fraction are listed in Item V-C. X = Testing required. - = Testing not required.

¥

TOXIC POLLUTANTS AND HAZARDOUS SUBSTANCES REQUIRED TO BE IDENTIFIED BY APPLICANTS IF EXPECTED TO BE PRESENT

TOXIC POLLUTANT

Asbestos

HAZARDOUS SUBSTANCES

Acetaldehyde Allyl alcohol Allyl chloride Amyl acetate Aniline Benzonitrile Benzyl chloride Butyl acetate Butylamine Captan Carbaryl Carbofuran Carbon disulfide Chlorpyrifos Coumaphos Cresol Crotonaldehyde Cyclohexane 2,4-D (2,4-Dichlorophenoxyacetic acid) Diazinon Dicamba Dichlobenil Dichlone 2,2-Dichloropropionic acid

HAZARDOUS SUBSTANCES

Dichlorvos Diethyl amine Dimethyl amine Dintrobenzene Diquat Disulfoton Diuron Epichlorohydrin Ethion Ethylene diamine Ethylene dibromide Formaldehyde Furfural Guthion Isoprene Isopropanolamine Kelthane Kepone Malathion Mercaptodimethur Methoxychlor Methyl mercaptan Methyl methacrylate Methyl parathion Mevinphos Mexacarbate Monoethyl amine Monomethyl amine

Naled Napthenic acid Nitrotoluene Parathion Phenolsulfonate Phosgene Propargite Propylene oxide Pyrethrins Quinoline Resorcinol Strontium Strychnine Styrene 2,4,5-T (2,4,5-Trichlorophenoxyacetic acid) TDE (Tetrachlorodiphenyl ethane) 2,4,5-TP [2-(2,4,5-Trichlorophenoxy) propanoic acid] Trichlorofon Triethanolamine Triethylamine Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium

HAZARDOUS SUBSTANCES

HAZARDOUS SUBSTANCES

1. Acetaldehyde 2. Acetic acid 3. Acetic anhydride 4. Acetone cyanohydrin 5. Acetyl bromide 6. Acetyl chloride 7. Acrolein 8. Acrylonitrile 9. Adipic acid 10. Aldrin 11. Allyl alcohol 12. Allyl chloride 13. Aluminum sulfate 14. Ammonia 15. Ammonium acetate 16. Ammonium benzoate 17. Ammonium bicarbonate 18. Ammonium bichromate 19. Ammonium bifluoride 20. Ammonium bisulfite 21. Ammonium carbamate 22. Ammonium carbonate 23. Ammonium chloride 24. Ammonium chromate 25. Ammonium citrate 26. Ammonium fluoroborate 27. Ammonium fluoride 28. Ammonium hydroxide 29. Ammonium oxalate 30. Ammonium silicofluoride 31. Ammonium sulfamate 32. Ammonium sulfide 33. Ammonium sulfite 34. Ammonium tartrate 35. Ammonium thiocyanate 36. Ammonium thiosulfate 37. Amyl acetate 38. Aniline 39. Antimony pentachloricle 40. Antimony potassium tartrate 41. Antimony tribromide 42. Antimony trichloride 43. Antimony trifluoride 44. Antimony trioxide 45. Arsenic disulfide 46. Arsenic pentoxide 47. Arsenic trichloride 48. Arsenic trioxide 49. Arsenic trisulfide 50. Barium cyanide 51. Benzene 52. Benzoic acid 53. Benzonitrile 54. Benzoyl chloride 55. Benzyl chloride 56. Beryllium chloride 57. Beryllium fluoride 58. Beryllium nitrate 59. Butylacetate 60. n-Butyiphthalate 61. Butylamine 62. Butyric acid 63. Cadmium acetate 64. Cadmium bromide 65. Cadmium chloride 66. Calcium arsenate 67. Calcium arsenite 69. Calcium carbide 69. Calcium chromate 70. Calcium cyanide 71. Calcium dodecylbenzenesulfonate

- 72. Calcium hypochlorite
- 73. Captan

74. Carbaryl 75. Carbofuran 76. Carbon disulfide 77. Carbon tetrachloride 78. Chlordane 79. Chlorine 80. Chlorobenzene 81. Chloroform 82. Chloropyrifos 83. Chlorosulfonic acid 84. Chromic acetate 85. Chromic acid 86. Chromic sulfate 87. Chromous chloride 88. Cobaltous bromide 89. Cobaltous formate 90. Cobaltous sulfamate 91. Coumaphos 92. Cresol 93. Crotonaldehyde 94. Cupric acetate 95. Cupric acetoarsenite 96. Cupric chloride 97. Cupric nitrate 98. Cupric oxalate 99. Cupric sulfate 100. Cupric sulfate ammoniated 101. Cupric tartrate 102. Cyanogen chloride 103. Cyclohexane 104. 2,4-D acid (2,4- Dichlorophenoxyacetic acid) 105. 2,4-D esters (2,4- Dichlorophenoxyacetic acid esters) 106. DDT 107. Diazinon 108. Dicamba 109. Dichlobenil 110. Dichlone 111. Dichlorobenzene 112. Dichloropropane 113. Dichloropropene 114. Dichloropropene-dichloproropane mix 115. 2,2-Dichloropropionic acid 116. Dichlorvos 117. Dieldrin 118. Diethylamine 119. Dimethylamine 120. Dinitrobenzene 121. Dinitrophenol 122. Dinitrotoluene 123. Diquat 124. Disulfoton 125. Diuron 126. Dodecylbenzesulfonic acid 127. Endosulfan 128. Endrin 129. Epichlorohydrin 130. Ethion 131. Ethylbenzene 132. Ethylenediamine 133. Ethylene dibromide 134. Ethylene dichloride 135. Ethylene diaminetetracetic acid (EDTA) 136. Ferric ammonium citrate 137. Ferric ammonium oxalate 138. Ferric chloride 139. Ferric fluoride

- 140. Ferric nitrate
- 141. Ferric sulfate
- 142. Ferrous ammonium sulfate
- 143. Ferrous chloride 144. Ferrous sulfate
 - . renous sunate

145. Formaldehyde 146. Formic acid 147. Fumaric acid 148. Furfural 149. Guthion 150. Heptachlor 151. Hexachlorocyclopentadiene 152. Hydrochloric acid 153. Hydrofluoric acid 154. Hydrogen cyanide 155. Hydrogen sulfide 156. Isoprene 157. Isopropanolamine dodecylbenzenesulfonate 158. Kelthane 159. Kepone 160. Lead acetate 161. Lead arsenate 162. Lead chloride 163. Lead fluoborate 164. Lead flourite 165. Lead iodide 166. Lead nitrate 167. Lead stearate 168. Lead sulfate 169. Lead sulfide 170. Lead thiocyanate 171. Lindane 172. Lithium chromate 173. Malathion 174. Maleic acid 175. Maleic anhydride 176. Mercaptodimethur 177. Mercuric cyanide 178. Mercuric nitrate 179. Mercuric sulfate 180. Mercuric thiocyanate 181. Mercurous nitrate 182. Methoxychlor 183. Methyl mercaptan 184. Methyl methacrylate 185. Methyl parathion 186. Mevinphos 187. Mexacarbate 188. Monoethylamine 189. Monomethylamine 190. Naled 191. Naphthalene 192. Naphthenic acid 193. Nickel ammonium sulfate 194. Nickel chloride 195. Nickel hydroxide 196. Nickel nitrate 197. Nickel sulfate 198. Nitric acid 199. Nitrobenzene 200. Nitrogen dioxide 201. Nitrophenol 202. Nitrotoluene 203. Paraformaldehyde 204. Parathion 205. Pentachlorophenol 206. Phenol 207. Phosgene 208. Phosphoric acid 209. Phosphorus 210. Phosphorus oxychloride 211. Phosphorus pentasulfide 212. Phosphorus trichloride 213. Polychlorinated biphenyls (PCB) 214. Potassium arsenate

- 215. Potassium arsenite
- 216. Potassium bichromate

HAZARDOUS SUBSTANCES

- 217. Potassium chromate
- 218. Potassium cyanide
- 219. Potassium hydroxide
- 220. Potassium permanganate
- 221. Propargite
- 222. Propionic acid
- 223. Propionic anhydride
- 224. Propylene oxide
- 225. Pyrethrins
- 226. Quinoline
- 227. Resorcinol
- 228. Selenium oxide
- 229. Silver nitrate
- 230. Sodium
- 231. Sodium arsenate
- 232. Sodium arsenite
- 233. Sodium bichromate
- 234. Sodium bifluoride
- 235. Sodium bisulfite
- 236. Sodium chromate
- 237. Sodium cyanide
- 238. Sodium dodecylbenzenesulfonate
- 239. Sodium fluoride
- 240. Sodium hydrosulfide 241. Sodium hydroxide
- 242. Sodium hypochlorite
- 243. Sodium methylate
- 244. Sodium nitrite
- 245. Sodium phosphate (dibasic)
- 246. Sodium phosphate (tribasic)

- 247. Sodium selenite
- 248. Strontium chromate
- 249. Strychnine
- 250. Styrene
- 251. Sulfuric acid
- 252. Sulfur monochloride
- 253. 2,4,5-T acid (2,4,5-
- Trichlorophenoxyacetic acid)
- 254. 2,4,5-T amines (2,4,5-Trichlorophenoxy acetic acid amines)
- 255. 2,4,5-T esters (2,4,5 Trichlorophenoxy acetic acid esters)
- 256. 2,4,5-T salts (2,4,5-Trichlorophenoxy acetic acid salts)
- 257. 2,4,5-TP acid (2,4,5-Trichlorophenoxy propanoic acid)
- 258. 2,4,5-TP acid esters (2,4,5-
- Trichlorophenoxy propanoic acid esters) 259. TDE (Tetrachlorodiphenyl ethane)
- 260. Tetraethyl lead
- 261. Tetraethyl pyrophosphate
- 262. Thallium sulfate
- 263. Toluene
- 264. Toxaphene
- 265. Trichlorofon
- 266. Trichloroethylene
- 267. Trichlorophenol
- 268. Triethanolamine
- dodecylbenzenesulfonate
- 269. Triethylamine

- 270. Trimethylamine
- 271. Uranyl acetate
 - 272. Uranyl nitrate
- 273. Vanadium penoxide
- 274. Vanadyl sulfate
- 275. Vinyl acetate 276. Vinylidene chloride
- 277. Xylene
- 278. Xylenol
- 279. Zinc acetate
- 280. Zinc ammonium chloride
- 281. Zinc borate
- 282. Zinc bromide
- 283. Zinc carbonate
- 284. Zinc chloride
- 285. Zinc cyanide
- 286. Zinc fluoride
- 287. Zinc formate
- 288. Zinc hydrosulfite
- 289. Zinc nitrate
- 290. Zinc phenolsulfonate
- 291. Zinc phosphide 292. Zinc silicofluoride
- 293. Zinc sulfate
- 294. Zirconium nitrate
- 295. Zirconium potassium flouride
- 296. Zirconium sulfate
- 297. Zirconium tetrachloride

LINE DRAWING

.

Star Street & St.

NOT A CARACTERISTICS OF

Diegos pri	int or type in the	o unchodod c	roop only		EPA I.D. NUN 03546664	. 175	rom Item I of F	OMB No. 204	0-0086.	
FORM 2C NPDES	₿				AP	U.S. ENV PLICATION F TURING, C	OR PERMIT	Approval expi _ PROTECTION AGENCY TO DISCHARGE WASTEWATER L, MINING AND SILVICULTURE Permits Program		S
	LL LOCATION				_					
				location to t				the receiving water.	· · · ·	
	ALL NUMBER		LATITUDE					D. RECEIVING W		
		1. DEG.	2. MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.			
001		33.00	6.00	45.00	92.00	2.00		Ouachita River via Out	tfall 002	
SMS 00	2	33.00	2.00	0.00	92.00	4.00	24.00	Ouachita River		
							,		·	
	S, SOURCES O	5 500 1170								
Source B. For ea and st necess	es of water and ach outfall, prov torm water run sary.	any collection /ide a descrip off; (2) The	n or treatment otion of: (1) A average flow	measures. Il operations contributed	contributing by each ope	wastewater t	to the effluent	including process wastewater, sanita ent received by the wastewater. Co	ny wastewater o	ooling u
1. OUT- FALL	ļ	Z. OPERA	TION(S) COI	1				3. TREATMENT		
NO. (list)	a. u	PERATION	(list)	b.	AVERAGE F			a. DESCRIPTION	b. LIST CO TABL	DDES FF _E 2C-1
001 &	1) Paper Ope			36.2 MGD			Screening		1T	
SMS002		oard Machin						dation and/or precipitation	2B	20
	- #4,5,6,	7&8 Tissue /	Aachines				Primary Cla		10	
	- Pulp Mi							ash removal	10	
	- Bleach						Equalization			
	- Recovery						Periodic pH	on with solids settling and dred	2K	
	- Utilitie						solids bas		3B	11
	- Mill Sar							ering - dewatered sludge, ash,	5T	ļ
		l Leachate						dged pond solids are used as fil	5R	50
								- J - Pont collect are abed as 111.	-	
	2) Building H	Products					material in	an ADEQ approved sludge pond		
-	2) Building I - Plywood			+		_		an ADEQ approved sludge pond posed in the mill's landfill or		
-					· · · · · · · · · · · · · · · · · · ·		closure, dis		ner	
-	- Plywood	1		0.5 MGD			closure, dis	posed in the mill's landfill or	ner	
-	- Plywood - Studmill 2) Chemical H	l Plant	lehyde Resin,				closure, dis	posed in the mill's landfill or	ner	
-	- Plywood - Studmill 2) Chemical H - Urea&Phe	l Plant			······································		closure, dis	posed in the mill's landfill or	ner	
-	- Plywood - Studmill 2) Chemical H - Urea&Phe - Formalde - Tall Oil	l Plant Enol Formald Shyde Produce I Fractioniz	tion				closure, dis	posed in the mill's landfill or	ner	
	 Plywood Studmill Chemical F Urea&Phe Formalde Tall Oil Site Storm 	l Plant enol Formalc ehyde Produc l Fractioniz nwater	aion		· · · · · · · · · · · · · · · · · · ·		closure, dis	posed in the mill's landfill or		
	- Plywood - Studmill 2) Chemical H - Urea&Phe - Formalde - Tall Oil	l Plant enol Formalc ehyde Produc l Fractioniz nwater	aion	5			closure, dis	posed in the mill's landfill or	ner	
	 Plywood Studmill Chemical F Urea&Phe Formalde Tall Oil Site Storm 	l Plant enol Formalc ehyde Produc l Fractioniz nwater	aion	1.4 MGD			closure, dis	posed in the mill's landfill or		
	 Plywood Studmill Chemical F Urea&Phe Formalde Tall Oil Site Storm 	l Plant enol Formald shyde Produc l Fractioniz mwater rossett (POI	tion aion W)	1.4 MGD			closure, dis	posed in the mill's landfill or		
	- Plywood - Studmill 2) Chemical H - Urea&Phe - Formalde - Tall Oil 3) Site Storm 4) City of Cr * See the Pro	l Plant enol Formald shyde Produc l Fractioniz mwater rossett (POI	tion aion W) ption for	1.4 MGD			closure, dis	posed in the mill's landfill or	ner	

1998 () 1997 ()

1

新华

.

S. Cal

1

 \mathbf{T}_{i}

	mplete the follo		•••	100	uuuu	Items II-A or B in		1301121.				
		· · · · · ·			3. FR	REQUENCY			4. FLOW			
	2 C	PERATION(s)			a. DAYS PE WEEK	R b. MONTHS	a. FLOW RA	TE (in mod)		VOLUME with units)		
1. OUTFALL NUMBER (<i>list</i>)		RIBUTING FLC (list)			(specify average)	PER YEAR (specify average)	1. LONG TERM	2. MAXIMUM	1. LONG TER	M 2. MAXIM		
							AVERAGE	DAILY	AVERAGE	DAILY		
III. PRODUCTION						(***						
A. Does an effluent guide	eline limitation mplete Item III-		d by EP	PA under S	ection 304 of	the Clean Water		ur facility?				
B. Are the limitations in the			leline ex	coressed in	terms of pro			ration)?				
YES (con	mplete Item III-	-C)				NO (go to Sec	tion IV)					
C. If you answered "yes" applicable effluent gu	to Item III-B, ideline, and ir	, list the qua ndicate the a	ntity wh	nich repres outfalls.	ents an actua	al measurement	of your level of	production, exp	pressed in the	terms and u	units used in the	
		1. A	VERAG	E DAILY F	RODUCTIO				2. AF			
a. QUANTITY PER DAY	/ b. UNITS	S OF MEASI	JRE		c. OPERAT	ION, PRODUCT, (specify)	MATERIAL, ET	C.	- 2. AFFECTED OUTFALLS (list outfall numbers)			
419 1,221 693 1.6 133,000 17 122 46 352 57 122 70 249	Machine Machine	- ¥ ¥ ¥ ¥ ¥		Pape: Tiss 2) Plyww 3) Studi 4) Chem Spra Form Urea Tall Rosij Phen Urea	ood (40 CF mill (40 C ical Plant y Dry Resi aldehyde, -Formaldeh Oil Fract n Size/Der ol Formald	ER 429.120) (40 CFR 414 n 50% Ayde Concentration ivatives lehyde Resin yde Resin		454.40)				
V. IMPROVEMENTS					-1,		tukting a					
A. Are you now required treatment equipment of permit conditions, adm YES (conditions)	or practices of	r any other e enforcement	nvironn	nental prog	rams which r ent complian	may affect the dis	charges descrit rs, stipulations,	ed in this appli	ication? This i	ncludes but	is not limited to	
1. IDENTIFICATION OF		2. AF	FECTE		LLS	3. BRIEF	DESCRIPTION		4.	FINAL COM	PLIANCE DATE	
AGREEMENT, E	:10.	a. NO.	b. SOL	JRCE OF DI	SCHARGE						b. PROJECTED	

100

31

a Contraction and the second second

i.

1.1

2.7

CONTINUED FROM PAGE 2	ARD035466648		
. INTAKE AND EFFLUENT CHARA			
A, B, & C: See instructions before p NOTE: Tables V-A, V-B.	proceeding – Complete one set of tables for each outfat and V-C are included on separate sheets numbered V	all – Annotate the outfall number in the /-1 through V-9	space provided.
). Use the space below to list any (of the pollutants listed in Table 2c-3 of the instructions ant you list, briefly describe the reasons you believe it t	s, which you know or have reason to	believe is discharged or may be discha I data in your possession.
1. POLLUTANT	2. SOURCE	1. POLLUTANT	2. SOURCE
Methyl Mercaptan Carbon disulfide	Reduced sulfur compounds may be present due to water scrubbing of air emission streams or losses of pulping liquor or condensates.		
· •• Mar			
cetaldehyde	Present in condensates		
ormaldehyde	Resin Manufacturing		
pichlorohydrin	Wet Strength Production		
premieronyarin	wet Strength Production		
I. POTENTIAL DISCHARGES NOT any pollutant listed in Item V-C a s YES (<i>list all such pollu</i>	ubstance or a component of a substance which you cu	ırrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	urrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	Irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	Irrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?
any pollutant listed in Item V-C a s	ubstance or a component of a substance which you cu	arrently use or manufacture as an inter go to Item VI-B)	rmediate or final product or byproduct?

and the second se

A STATE OF

Contraction of the

VII. BIOLOGICAL TOXICITY TESTIN			
Do you have any knowledge or reaso relation to your discharge within the la	n to believe that any biological test for acute or chron ast 3 years?	nic toxicity has been made on any of you	r discharges or on a receiving water
· •) and describe their purposes below)	NO (go to Section VIII)
Chronic and acute toxici #AR0001210.	ty testing is conducted every two	months as required by the	current NPDES permit
VIII. CONTRACT ANALYSIS INFORM			
-4	Item V performed by a contract laboratory or consult	-	
YES (list the name, add	ress, and telephone number of, and pollutants analyzed by	V_{i} , NO (go to Section IX)	
each such laborato	ry or firm below)		
			· · · · · · · · · · · · · · · · · · ·
A. NAME	B. ADDRESS	C. TELEPHONE (area code & no.)	D. POLLUTANTS ANALYZE (<i>list</i>)
A. NAME	8600 Kanis Road		(list) All in Item V Parts B &
American Interplex	8600 Kanis Road Little Rock, AR 72204	(area code & no.) (501) 224-5060	(list) All in Item V Parts B & except those listed belo
	8600 Kanis Road	(area code & no.)	(list) All in Item V Parts B &
American Interplex	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive	(area code & no.) (501) 224-5060	(list) All in Item V Parts B & except those listed belo Dioxin
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin,
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives Test America	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue	(area code & no.) (501) 224-5060 (910) 350-1903	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphor
American Interplex Analytical Perspectives Test America X. CERTIFICATION	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)
American Interplex Analytical Perspectives Test America X. CERTIFICATION	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404 document and all attachments were prepared under	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)
American Interplex Analytical Perspectives Test America X. CERTIFICATION I certify under penalty of law that this qualified personnel property gather a directly responsible for gathering the	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404 Savannah, GA 31404	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858 my direction or supervision in accordan ny inquiry of the person or persons wh	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)
American Interplex Analytical Perspectives Test America X. CERTIFICATION I certify under penalty of law that this qualified personnel property gather a directly responsible for gathering the	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404 document and all attachments were prepared under ind evaluate the information submitted. Based on r information, the information submitted is, to the best false information, including the possibility of fine and	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858 (912) 354-7858	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)
American Interplex Analytical Perspectives Test America X. CERTIFICATION	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404 document and all attachments were prepared under ind evaluate the information submitted. Based on r information, the information submitted is, to the best false information, including the possibility of fine and	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858 (912) 354-7858 my direction or supervision in accordan in accordant for knowing violations. B. PHONE NO. (area code & no.)	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)
American Interplex Analytical Perspectives Test America X. CERTIFICATION I certify under penalty of law that this qualified personnel properly gather are significant penalties for submitting A. NAME & OFFICIAL TITLE (type or p Sary W. Kaiser	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404 document and all attachments were prepared under ind evaluate the information submitted. Based on r information, the information submitted is, to the best false information, including the possibility of fine and	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858 (912) 354-7858 my direction or supervision in accordant my inquiry of the person or persons who of my knowledge and belief, true, accur d imprisonment for knowing violations. B. PHONE NO. (area code & no.) (870) 567-8310	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)
American Interplex Analytical Perspectives Test America X. CERTIFICATION I certify under penalty of law that this qualified personnel property gather a directly responsible for gathering the are significant penalties for submitting A. NAME & OFFICIAL TITLE (type or p	8600 Kanis Road Little Rock, AR 72204 5500 Business Drive Wilmington, NC 28405 5102 LaRoche Avenue Savannah, GA 31404 document and all attachments were prepared under and evaluate the information submitted. Based on r information, the information submitted is, to the best of false information, including the possibility of fine and print)	(area code & no.) (501) 224-5060 (910) 350-1903 (912) 354-7858 (912) 354-7858 my direction or supervision in accordan in accordant for knowing violations. B. PHONE NO. (area code & no.)	(list) All in Item V Parts B & except those listed belo Dioxin Zinc, Copper, Dieldrin, Mercury, Total Phosphorn and Nitrate (as N)

A STATE OF THE OWNER OF THE OWNER OF

Ľ,

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (use the same format) instead of completing these pages.

SEE INSTRUCT	IONS.				Jes.		ARD0354	66648		ŀ				
V. INTAKE AN	D EFFLU	ENT CHARAG	CTERISTICS (cor	tinued from page	3 of Form 2-C)								OUTFALL NO	•
PART A -You	must prov	vide the result	s of at least one a	nalysis for every	pollutant in this tak	ole. Complete o	ne table for each ou	utfall. See instr	ructions for add	litional details.				
					2. EFFLU	JENT					3. UNITS 4. INTAKE specify if blank) (optional)			
		-		if (if a	W 30 DAY VALUE	c. LOI	NG TERM AVRG. V (if available)	ALUE				a. LONG T AVERAGE \	ERM	
1. POLLUT	ANT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRAT	ION (2) MASS	(1) CONC	ENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Demand (BOD)		78.5	33702	48.1	16859	27	27.9 9751		470	mg/L	lb/d			
b. Chemical Ox Demand (<i>COD</i>)		290	97,470) NA	NA	1	NA		1	mg/L				
c. Total Organic (<i>TOC</i>)	c Carbon	479.1	. 352,30	6 NA	NA	15	1.2	53,336	1094	mg/L	lb/d			
d. Total Susper Solids (<i>TSS</i>)	nded	103	46384	57	21267	31	1.6	11084	470	mg/L	lb/d			
e. Ammonia (as	N)	0.66	222	NA	NA	N	A	NA	1	mg/L	lb/d			"
f. Flow		VALUE	L26.4	VALUE	52.1	VALUE	42.2		1096		MGD	VALUE		
g. Temperature (winter)		VALUE An	nbient	VALUE	bient	VALUE	NA					VALUE		
h. Temperature (summer)		VALUE An	nbient	VALUE Am	bient	VALUE	NA			°C		VALUE		
i. pH		MINIMUM 7.1	MAXIMUM 8.1	MINIMUM 7.5	MAXIMUM 7.8				470	STANDARD				
0110	ntitative c	lata or an exp		nuent inmitations	aulaeline vou mi	ust brovide the	"X" in column 2-b for results of at least each outfall. See th	one analysis	for that pollute	of Ear other on	llutonto for u	umn 2a for any pollu vhich you mark colu	utant which is umn 2a, you	limited either must provide
1. POLLUTANT	2. N	IARK "X"				3. EFFLUENT				4. U	NITS	5. IN	TAKE (option	al)
AND CAS NO.	a. BELIEVE	b. D BELIEVED			b. MAXIMUM 30 (if avail		c. LONG TERM / (if avail		= - d. NO. OF	a. CONCEN		a. LONG TERM VALU		
(<i>if available</i>) a. Bromide	PRESEN		(1) CONCENTRATIO	N (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSE			(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
(24959-67-9)			0.50	168			_		1	mg/L	lb/d			
b. Chlorine, Total Residual		X	ND						36	mg/L				
c. Color	\times		250						1	PCU	NA			
d. Fecal Coliform	\times		12						1	/100ml				
e. Fluoride (16984-48-8)	$ $ \times		0.23	77.3					1	mg/L	lb/d		1	
f. Nitrate-Nitrite (as N)	$ \times$		ND						1	mq/L			1	

EPA Form 3510-2C (8-90)

.

CONTINUE ON REVERSE

ITEM V-B CONTINUED FROM FRONT

Sec. 1

	2. MA	RK "X"				EFFLUENT	_			4. UNI	TS	5. INT	AKE (option	al)
1. POLLUTANT AND	a.	ь.	a. MAXIMUM D		b. MAXIMUM 30 (if availa		c. LONG TERM A (if availa					a. LONG T	ERM	Í
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	AVERAGE V (1) CONCENTRATION	(2) MASS	b. NO. OF
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		4.0	1,344				(2) 111 100	1	mg/L	lb/d	CONCENTRATION	(2) MASS	
h. Oil and Grease		X	ND			· · · · · ·			1	mg/L				
i. Phosphorus (as P), Total (7723-14-0)	\times		2.7	909.7			1.3	470.3	52	mg/L	lb/d			
j. Radioactivity										······			ł	<u> </u>
(1) Alpha, Total	X		1.14						1	pCi/L				
(2) Beta, Total	X		13.4			·······			1	pCi/L				
(3) Radium, Total	X		1.28						1	pCi/L				
(4) Radium 226, Total	X		0.857						1	pCi/L				
k. Sulfate (as SO ₄) (14808-79-8)	\times		330	110,914					1	mg/L	lb/d			
I. Sulfide (as S)	X		0.15	50.4		-			1	mg/L	lb/d			
m. Sulfite (as SO ₃) (14265-45-3)		\times	ND			i			1	mg/L				
n. Surfactants		\times	ND						1	mg/L				
o. Aluminum, Total (7429-90-5)	\times		1100	370					1	ug/L	lb/d			
p. Barium, Total (7440-39-3)	\times		350	118					1	ug/L	lb/d			
q. Boron, Total (7440-42-8)		X	ND	·					1	ug/L				
r. Cobalt, Total (7440-48-4)		Х	ND						1	ug/L				
s. Iron, Total (7439-89-6)	Х		3500	1322.3			2040	718.7	27	ug/L	lb/d			
t. Magnesium, Total (7439-95-4)	\times		10000	3,361				·····	1	ug/L	lb/d			
u. Molybdenum, Total (7439-98-7)		\times	ND			-			1	ug/L		· · · · · · · · · · · · · · · · · · ·		
v. Manganese, Total (7439-96-5)	\times		2200	739					1	ug/L	lb/d			
w. Tin, Total (7440-31-5)		\times	ND						1	ug/L				
x. Titanium, Total (7440-32-6)	X		7.6	2.55					1	ug/L	lb/d			

EPA Form 3510-2C (8-90)

CONTINUE ON PAGE V-3

..<u>e</u>. ...

				∏ Ē	PA I.D. NUN	BER (copy from Iter	n 1 of Form 1)	OUTFALL NUM	BER						
CONTINUED FROM	I PAGE 3 O	F FORM 2-	с	A	RD035466	5648		001							
provide discharg pollutan briefly d	s that apply s), mark "X" the results ged in conce its which you	in column of at least o entrations of u know or h reasons th	2-b for eac one analysis f 10 ppb or lave reason le pollutant	ch pollutant you kn s for that pollutant, r greater. If you ma n to believe that yo	ils, cyanides, iow or have i . If you mark ark column 21 ou discharge	r, refer to Table 20 and total phenols. reason to believe is column 2b for any b for acrolein, acryle in concentrations c . Note that there a	of you are no present. Ma pollutant, you politrile, 2,4 di of 100 ppb or	ot required to mark rk "X" in column 2- must provide the r nitrophenol, or 2-m greater. Otherwise	c column 2- c for each results of at ethyl-4, 6 d	a (secondary pollutant you least one an initrophenol, j	industries, nor believe is abse alysis for that p you must provid	process wa ent. If you m ollutant if yo de the result	stewater outfalls, a park column 2a for ou know or have rea s of at least one an	nd nonrequi any pollutan ason to belie alysis for ea	ired GC/MS it, you must eve it will be ach of these
1. POLLUTANT	2	2. MARK "X	»				FFLUENT				4. UN	ITS	5. INT/	KE (optional	/)
AND CAS NUMBER (if available)	a. TESTING	b. BELIEVED PRESENT	c. BELIEVED ABSENT	1 (1)	1	b. MAXIMUM 30 (if availat	ble)	c. LONG TERN VALUE (if ava (1)	ilable)		a. CONCEN-		a. LONG T AVERAGE \ (1)		b. NO. OF
METALS, CYANIDE				CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
1M. Antimony, Total (7440-36-0)	X		X	ND						1	ug/L				<u> </u>
2M. Arsenic, Total (7440-38-2)	\times	X		1.9	0.64					1	ug/L	lb/d			
3M. Beryllium, Total (7440-41-7)	\times		\times	ND						1	ug/L				
4M. Cadmium, Total (7440-43-9)	\times		\times	ND						1	ug/L				
5M. Chromium, Total (7440-47-3)	\times		\times	ND						1	ug/L				
6M. Copper, Total (7440-50-8)	X	\times		16.0	6.8			6.4	2.3	36	ug/L	lb/d			
7M. Lead, Total (7439-92-1)	X		_X	ND						1	ug/L			,	
8M. Mercury, Total (7439-97-6)	X	X		6.8	0.0030			2.7	0.001	12	ng/L	lb/d		_	
9M. Nickel, Total (7440-02-0)	X	X		11	3.70					1	ug/L	lb/d			
10M. Selenium, Total (7782-49-2)	X		Х	ND						1	ug/L				
11M. Silver, Total (7440-22-4)	X		X	ND						1	ug/L				
12M. Thallium, Total (7440-28-0)	X		X	ND					_	1	ug/L				
13M. Zinc, Total (7440-66-6)	\times	X		540	225.2			47.0	52.3	51	ug/L	lb/d			
14M. Cyanide, Total (57-12-5)	\mathbf{X}		Х	ND						1	ug/L				
15M. Phenols, Total	\times	\times		13	4.37					1	ug/L	lb/d			
DIOXIN 2.3.7.8-Tetra-	<u> </u>														
2,3,7,8-1 etra- chlorodibenzo-P- Dioxin (1764-01-6)	\mathbf{X}		\mathbf{X}	DESCRIBE RESU	JLTS										

EPA Form 3510-2C (8-90)

•

CONTINUE ON REVERSE

summits (A) (a.6)

.

nth a l

and a strengt

Sec. 1

a line

A. 300

A

CONTINUED FROM THE FRONT

		2. MARK "X	n			3. E	FFLUENT				4. UN		5 INITA	KE (optiona	-0
1. POLLUTANT AND			l –			b. MAXIMUM 30	DAY VALUE	c. LONG TERM	AVRG.		4.01		a. LONG T		<u>"</u>
CAS NUMBER (if available)	a. TESTING REQUIRED	b. BELIEVED	c. BELIEVED	a. MAXIMUM DAI (1) CONCENTRATION		(if availal	ble)	VALUE (if ava	ailable)		a. CONCEN-		AVERAGE V	ALUE	b. NO. OF
GC/MS FRACTION				CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
1V. Accrolein (107-02-8)			X	ND						1	ug/L		1		1
2V. Acrylonitrile (107-13-1)	X		X	ND						1					
3V. Benzene (71-43-2)	X		X	ND	<u>.</u>					1	ug/L ug/L				
4V. Bis (<i>Chloro-methyl</i>) Ether (542-88-1)	X		X	ND						1	ug/L				<u> </u>
5V. Bromoform (75-25-2)	X		X	ND						1	ug/L			<u> </u>	
6V. Carbon Tetrachloride (56-23-5)	\times		Х	ND						1	ug/L	-			<u> </u>
7V. Chlorobenzene (108-90-7)	Х		Х	ND						1	ug/L				<u> </u>
8V. Chlorodi- bromomethane (124-48-1)	\times		Х	ND						1	ug/L			<u> </u>	
9V. Chloroethane (75-00-3)	X		X	ND						1	ug/L				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		Х	ND					. <u> </u>	1	ug/L				
11V. Chloroform (67-66-3)	X		Х	ND						1	ug/L			<u> </u>	
12V. Dichloro- bromomethane (75-27-4)	\times		X	ND						1	ug/L				
13V. Dichloro- difluoromethane (75-71-8)	\times		\times	ND						1	ug/L				
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	ND						1	ug/L				
15V. 1,2-Dichloro- ethane (107-06-2)	X		X	ND						1	ug/L	·			
16V. 1,1-Dichloro- ethylene (75-35-4)	\times		Х	ND						1	ug/L				
17V. 1,2-Dichloro- propane (78-87-5)	\mathbf{X}_{1}		Х	ND						1	ug/L			· <u> </u>	
18V. 1,3-Dichloro- propylene (542-75-6)	\times		Х	ND						1	ug/L				
19V. Ethylbenzene (100-41-4)	\times		X	ND						1	ug/L				
20V. Methyl Bromide (74-83-9)	X		X	ND						1	ug/L				
21V. Methyl Chloride (74-87-3)	X		X	ND						1	ug/L				

EPA Form 3510-2C (8-90)

PAGE V-4

.

CONTINUE ON PAGE V-5

A REAL PROPERTY OF THE REAL 33

CONTINUED FROM PAGE V-4

. . . .

CONTINUED FRO		2. MARK "X	"			3. E	FFLUENT				4. UN	ITS	5 INT4	KE (optiona	10
1. POLLUTANT AND	_			a. MAXIMUM DA		b. MAXIMUM 30 I	DAY VALUE	C. LONG TERM			<u> </u>		a. LONG T	ERM	<u>''</u>
CAS NUMBER (if available)	a. TESTING	BELIEVED	C. BELIEVED	(1)		(if availal		VALUE (if ave (1)	ailable)	d. NO. OF	a. CONCEN-		AVERAGE V (1)	ALUE	b. NO. OF
GC/MS FRACTION		PRESENT		CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
22V. Methylene						· · · · · · · · · · · · · · · · · · ·		l	1	r			· · · · · · · · · · · · · · · · · · ·		
Chloride (75-09-2) 23V. 1,1,2,2-				ND						1	ug/L				
Tetrachloroethane (79-34-5)	X		\times	ND						1	ug/L				
24V. Tetrachloro- ethylene (127-18-4)	X		X	ND						1	ug/L				
25V. Toluene (108-88-3)	X		\times	ND						1	ug/L				
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	ND						1	ug/L				
27V. 1,1,1-Trichloro- ethane (71-55-6)	X		X	ND						1	ug/L				
28V. 1,1,2-Trichloro- ethane (79-00-5)	X		X	ND						1	ug/L				
29V Trichloro- ethylene (79-01-6)	X		X	ND						1	ug/L				<u> </u>
30V. Trichloro- fluoromethane (75-69-4)	\times		\times	ND				·		1	ug/L				
31V. Vinyl Chloride (75-01-4)	Х		X	ND						1	ug/L				
GC/MS FRACTION	– ACID CO	MPOUNDS	3												<u>i</u>
1A. 2-Chlorophenol (95-57-8)	X		X	ND						1	ug/L				
2A. 2,4-Dichloro- phenol (120-83-2)	X		\times	ND						1	ug/L				
3A. 2,4-Dimethyl- phenol (105-67-9)	X		\times	ND						1	ug/L				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	X		\times	ND						ı	ug/L				
5A. 2,4-Dinitro- phenol (51-28-5)	X		\times	ND						1	ug/L				
6A. 2-Nitrophenol (88-75-5)	\times		\times	ND						1	ug/L			_	
7A. 4-Nitrophenol (100-02-7)	X		Х	ND	_					1	ug/L				
8A. P-Chloro-M- Cresol (59-50-7)	Х		X	ND						1	ug/L				
9A. Pentachloro- phenol (87-86-5)	X		X	ND						1	ug/L				
10A. Phenol (108-95-2)	X		X	ND						1	ug/L				
11A. 2,4,6-Trichloro- phenol (88-05-2)	X		X	ND						1	ug/L			<u> </u>	

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

Sec. 9 . 48

		2. MARK "X	"			3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	Δ.
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 I (if availal		C. LONG TERM					a. LONG T	ERM	Î
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED	BELIEVED ABSENT	(1) CONCENTRATION		(1)		VALUE (if ava (1) CONCENTRATION			a. CONCEN-	b MAOO	AVERAGE V (1) CONCENTRATION		b. NO. OF
GC/MS FRACTION				S	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
1B. Acenaphthene (83-32-9)	X		X	ND						1	ug/L				<u> </u>
2B. Acenaphtylene (208-96-8)	X		X	ND			,			1	ug/L				
3B. Anthracene (120-12-7)	X		X	ND						1	ug/L				
4B. Benzidine (92-87-5)	X		\times	ND						1	ug/L				
5B. Benzo (<i>a</i>) Anthracene (56-55-3)	\times		X	ND						1	ug/L				
6B. Benzo (a) Pyrene (50-32-8)	X		X	ND						1	ug/L				
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		X	ND						1	ug/L				
8B. Benzo (ghi) Perylene (191-24-2)	X		X	ND						1	ug/L				
9B. Benzo (k) Fluoranthene (207-08-9)	X		X	ND						1	ug/L				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		\times	ND						1	ug/L				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	\times		X	ND						1	ug/L				
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	ND						1	ug/L			-	
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	\times	\times		25	8.4					1	ug/L	lb/d			
14B. 4-Bromophenyl Phenyl Ether (101-55-3)	\times		\times	ND					· · · · · · · · · · · · · · · · · · ·	1	ug/L				
15B. Butyl Benzyl Phthalate (85-68-7)	X		\times	ND					_	1	ug/L				
16B. 2-Chloro- naphthalene (91-58-7)	\times		\times	ND						1	ug/L				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	\times		\times	ND						1	ug/L				
18B. Chrysene (218-01-9)	X		\mathbf{X}	ND						1	ug/L				<u>.</u>
19B. Dibenzo (a,h) Anthracene (53-70-3)	X		X	ND						1	ug/L				
20B. 1,2-Dichloro- benzene (95-50-1)	X		X	ND						1	ug/L				
21B. 1,3-Di-chloro- benzene (541-73-1)	\times		\times	ND						1	ug/L				
EPA Form 3510.20				-											

EPA Form 3510-2C (8-90)

CONTINUE ON PAGE V-7

Sec. 16

Services.

2.00

2000

A COLUMN

Ż

19.4

il W.A.

ъ

CONTINUED FROM PAGE V-6

	2. MARK "X"					3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	Δ
1. POLLUTANT AND CAS NUMBER	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availat	DAY VALUE	c. LONG TERM VALUE (if ava					a. LONG T AVERAGE V	ERM	
(if available)	TESTING REQUIRED	PRESENT	BELIEVED ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION		b. NO. OF
GC/MS FRACTION	I – BASE/N	EUTRAL CO	OMPOUNE	S (continued)	····				(1)	· · · ·			CONCENTIATION	(2) WA33	
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	ND						1	ug/L				
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		X	ND						1	ug/L				_
24B. Diethyl Phthalate (84-66-2)	X		X	ND					·····	1	ug/L				
25B. Dimethyl Phthalate (131 -11-3)	\times		X	ND						1	ug/L				
26B. Di-N-Butyl Phthalate (84-74-2)	\times		Х	ND	-					1	ug/L				
27B. 2,4-Dinitro- toluene (121-14-2)	\times		X	ND						1	ug/L				
28B. 2,6-Dinitro- toluene (606-20-2)	\times		X	ND						1	ug/L				
29B. Di-N-Octyl Phthalate (117-84-0)	\times		Х	ND						1	ug/L				
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		X	ND						1	ug/L				
31B. Fluoranthene (206-44-0)	\mathbf{X}		\mathbf{X}	ND						1	ug/L				
32B. Fluorene (86-73-7)	\times		\times	ND						1	ug/L				
33B. Hexachloro- benzene (118-74-1)	\mathbf{X}		\mathbf{X}	ND						1	ug/L				
34B. Hexachloro- butadiene (87-68-3)	X		\times	ND						1	ug/L				
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	ND						1	ug/L				
36B Hexachloro- ethane (67-72-1)	\times		\times	ND						1	ug/L		-		
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	\times		\times	ND						1	ug/L				
38B. Isophorone (78-59-1)	X		\times	ND						1	ug/L				
39B. Naphthalene (91-20-3)	X		X	ND						1	ug/L				
40B. Nitrobenzene (98-95-3)	\times		\times	ND						1	ug/L				
41B. N-Nitro- sodimethylamine (62-75-9)	\times		X	ND						1	ug/L				
42B. N-Nitrosodi- N-Propylamine (621-64-7)	\times		X	ND						1	ug/L				

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

雪

10

Ż

CONTINUED FROM THE FRONT

		2. MARK "X	n			3. E	FFLUENT				4. UN	ITS	5 INT4	KE (optiona	γ <u>λ</u>
1. POLLUTANT AND				a. MAXIMUM DA		b. MAXIMUM 30 [c. LONG TERM		Γ			a. LONG T	ERM	<u>'</u>
CAS NUMBER (if available)	a. TESTING	b. BELIEVED PRESENT	C. BELIEVED	(1)		(if availat	ole)	VALUE (if ava			a. CONCEN-		AVERAGE V (1)	ALUE	b. NO. OF
GC/MS FRACTION		1		CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
43B, N-Nitro-		T		S (continuea)				· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · ·					
sodiphenylamine (86-30-6)	\times		\times	ND						1	ug/L	•			
44B. Phenanthrene (85-01-8)	\times		\times	ND						1	ug/L				
45B. Pyrene (129-00-0)	X		\times	ND						1	ug/L				
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	X		\times	ND						1	ug/L	·····			
GC/MS FRACTION	I - PESTIC	IDES						······		L			l		
1P. Aldrin (309-00-2)	\times		X	ND						1	ug/L				
2Ρ. α-BHC (319-84-6)	X	-	X	ND						1	ug/L				
3Р. β-ВНС (319-85-7)	X		\times	ND						1	ug/L				
4P. γ-BHC (58-89-9)	X		\times	ND						1	ug/L				
5P. δ-BHC (319-86-8)	X		\times	ND						1	ug/L				
6P. Chlordane (57-74-9)	X		\times	ND						1	ug/L				
7P. 4,4'-DDT (50-29-3)	X		\times	ND						1	ug/L				
8P. 4,4'-DDE (72-55-9)	X		\times	ND						1	ug/L				
9P. 4,4'-DDD (72-54-8)	\times		\times	ND						1	ug/L		_		
10P. Dieldrin (60-57-1)	X		\times	ND						1	ug/L				
11P. α-Enosulfan (115-29-7)	X		\times	ND						1	ug/L				
12P. β-Endosulfan (115-29-7)	\mathbf{X}		X	ND						1	ug/L				
13P. Endosulfan Sulfate (1031-07-8)	\times		\times	ND						1	ug/L				-
14P. Endrin (72-20-8)	X		X	ND						1	ug/L				
15P. Endrin Aldehyde (7421-93-4)	\times		\times	ND		1				1	ug/L			-	
16P. Heptachlor (76-44-8)	\times		\times	ND						1	ug/L				

EPA Form 3510-2C (8-90)

CONTINUE ON PAGE V-9

the stand

.	alland,	3.4	32.5		1	1	- 20-	t share ay	14.75 TK.		and the second sec	8 - 9-94		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			δx	.
-`			, i	1.4			5 E							*	1			

				EPA	EPA I.D. NUMBER (copy from Item 1 of Form 1) OU				BER						
CONTINUED FRO	M PAGE V-	8			ARI	0035466648		00	1						
		2. MARK "X'	0			3. E	FFLUENT				4. ŪN	ITS	5. INTA	KE (optiona	μ)
1. POLLUTANT AND CAS NUMBER	a. TESTING	b. BELIEVED	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 [(if availat		c. LONG TERN VALUE (<i>if ave</i>		d NO OF	a. CONCEN-		a. LONG T AVERAGE V	ERM	b. NO. OF
(if available)	REQUIRED	PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION	I – PESTICI	DES (contin	ued)									L		(2)	<u>L</u>
17P. Heptachlor Epoxide (1024-57-3)	\times		X	ND						1	ug/L			•	
18P. PCB-1242 (53469-21-9)	\times		X	ND						1	ug/L				
19P. PCB-1254 (11097-69-1)	X		Х	ND						1	ug/L				-
20P. PCB-1221 (11104-28-2)	X		X	ND						1	ug/L				
21P. PCB-1232 (11141-16-5)	X		X	ND					····	1	ug/L				
22P. PCB-1248 (12672-29-6)	X		Х	ND						1	ug/L	·			1
23P. PCB-1260 (11096-82-5)	X		X	ND						1	ug/L	·			<u> </u>
24P. PCB-1016 (12674-11-2)	X		Х	ND	·					1	ug/L				
25P. Toxaphene (8001-35-2)	\times		X	ND						1	ug/L				
EPA Form 3510-20	(8-90)					·	PAGE						II		

EPA Form 3510-2C (8-90)

PAGE V-9

report some or all of this information

10 St 1 St 10 St

EPA I.D. NUMBER (copy from Item 1 of Form 1) ARD035466648

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

V. INTAKE AND EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C)

OUTFALL NO. SMS 002

.

18 th \$1

12

Ĩ,

PART A -You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details.

		·····		2. EFFLU	ENT			3. UN (specify ij			4. INTAKE (optional)	
	a. MAXIMUM D	AILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM AVR (if available					a. LONG 1 AVERAGE		
1. POLLUTANT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Oxygen Demand (BOD)	25.4	8,575	20.5	6,495	13.7	4,440	244	mg/L	lb/d		(2)	
b. Chemical Oxygen Demand (COD)	220	84,584	NA	NA	NA	NA	1	mg/L	lb/d			
c. Total Organic Carbon (TOC)	260.6	113,249	NA	NA	100.5	33,534	236	mg/L	lb/d			
d. Total Suspended Solids (TSS)	33	12,383	25	7,512	14.0	4,413	244	mg/L	lb/d			
e. Ammonia (as N)	1.4	538	NA	NA	NA	NA	NA	mg/L	lb/d			
f. Flow	VALUE 95	5	VALUE 66.2	2 .	VALUE 40.7	I	566		MGD	VALUE		
g. Temperature (winter)	VALUE Ambie	ent	VALUE Ambie	nt	VALUE			°C	I	VALUE		
h. Temperature (summer)	VALUE Ambie	ent	VALUE Ambie	nt	VALUE NA			°C		VALUE		
i. pH	MINIMUM 7.1	MAXIMUM 8.1	MINIMUM 7.5	MAXIMUM 7.8		and a sumble see	244	STANDARI	DUNITS			
anecuy, or n	nunecily but expre	ssiy, in an emi	Jent ilmitations guid	eline, you mu	present. Mark "X" in column a st provide the results of at l one table for each outfall. S	east one analvsi	s for that polluta	ant For other p	ollutants for	lumn 2a for any poll which you mark col	utant which is umn 2a, you	limited either must provide
2. M	MARK "X"				EFFLUENT				JNITS	5. IN	TAKE (option	al)
										,		

	2. 1017					EFFLUENT				4. UNI	rs	5. INT.	AKE (option	al)
1. POLLUTANT AND CAS NO.	a.	b.	a. MAXIMUM DA		b. MAXIMUM 30 (if availa		c. LONG TERM A (if availa					a. LONG TERM / VALUE		
(if available)	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)	X		0.48	185					1	mg/L	lb/d			
b. Chlorine, Total Residual		X	0						1	mg/L				
c. Color	$ \times$		250						1	PCU				
d. Fecal Coliform	\times		13						1	/100ml				
e. Fluoride (16984-48-8)	X		0.24	92.3					1	mg/L	lb/d			
f. Nitrate-Nitrite (as N)	X		ND						1	mg/L				

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE
and the second

ITEM V-B CONTINUED FROM FRONT

	2. MA	RK "X"			3.	EFFLUENT				4. UNI	rs	5. INT	AKE (option	al)
1. POLLUTANT AND		b.	a. MAXIMUM D/		b. MAXIMUM 30 • (if availa		c. LONG TERM A					a. LONG T	ERM	<u> </u>
CAS NO. (if available)	a. BELIËVED PRESENT	BELIEVED	(1) CONCENTRATION		(1) CONCENTRATION		(<i>if availa</i> (1) CONCENTRATION	· · · ·	d. NO. OF	a. CONCEN-		AVERAGE V		b. NO. OF
g. Nitrogen,	PRESENT	ABSENT	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
Total Organic (as N)	X		1.4	538					1	mg/L	lb/d			
h. Oil and Grease		\mathbf{X}	ND						1	mg/L				
i. Phosphorus (as P), Total (7723-14-0)	\times		1.6	477		<u> </u>	1.12	344	21	mg/L	lb/d			
j. Radioactivity														
(1) Alpha, Total	X		0.392						1	pCi/L				
(2) Beta, Total	\mathbf{X}		16.6						1	pCi/L				
(3) Radium, Total	X		0.317						1	pCi/L				
(4) Radium 226, Total	\times		0.925						1	pCi/L				
k. Sulfate (as SO4) (14808-79-8)	\times		300	115,342					1	mg/L	lb/d			
1. Sulfide (as S)	Х		0.17	65.4					1	mg/L	lb/d			
m. Sulfite (<i>as SO</i> 3) (14265-45-3)		\times	ND						1	mg/L				
n. Surfactants		Х	ND						1	mg/L				
o. Aluminum, Total (7429-90-5)	X		700	269					1	ug/L	lb/d			
p. Barium, Total (7440-39-3)	\times		280	108					1	ug/L	lb/d			
q. Boron, Total (7440-42-8)		X	ND						1	ug/L				
r. Cobalt, Total (7440-48-4)		Х	ND						1	ug/L				
s. Iron, Total (7439-89-6)	Х		890						1	ug/L	lb/d			
t. Magnesium, Total (7439-95-4)	\times		9900						1	ug/L	lb/d			
u. Molybdenum, Total (7439-98-7)		\times	ND						1	ug/L				
v. Manganese, Total (7439-96-5)	\times		1900						1	ug/L	lb/d			
w. Tin, Total (7440-31-5)		\times	ND						1	ug/L				
x. Titanium, Total (7440-32-6)	\times		6.2						1	ug/L	lb/d	_		

EPA Form 3510-2C (8-90)

CONTINUE ON PAGE V-3

× 322

and a desi

in the C

and the second second

10.00

No. Contraction

														22	
													· .		
				Γ	EPA I.D. NUN	BER (copy from Iter	m 1 of Form 1)	OUTFALL NUM	IBER						
CONTINUED FROM			-		ARD03546			SMS 002							
fraction provide dischar pollutar briefly d	s that apply s), mark "X" the results ged in conce ts which yo describe the nal details ar	in column of at least o entrations o u know or h e reasons th nd requirem	2-b for eac one analysis f 10 ppb or have reasor he pollutant ents.	or ALL toxic me in pollutant you s for that pollutan greater. If you r to believe that	tais, cyanides, know or have nt. If you mark nark column 21 you discharge	er, refer to Table 2c, and total phenols. reason to believe is column 2b for any b for acrolein, acryld in concentrations c. Note that there a	If you are no s present. Mai pollutant, you onitrile, 2,4 dir of 100 ppb or re 7 pages to	at required to mark rk "X" in column 2 must provide the hitrophenol, or 2-n greater. Otherwise	k column 2- l-c for each results of at nethyl-4, 6 d	a (secondary pollutant you least one an linitrophenol,	industries, nor believe is abse alysis for that p you must provid	nprocess wa ent. If you m collutant if yo de the result	stewater outfalls, a park column 2a for ou know or have rea s of at least one an out of the state of the state of the state of the state of the state of the state of the state of the stat	nd nonrequi any pollutant ason to belie alysis for ea	ired GC/MS it, you must eve it will be ach of these
1. POLLUTANT	<u> </u>	2. MARK "X				3. E b. MAXIMUM 30				1	4. UN	ITS		AKE (optional	/)
AND CAS NUMBER	a. TESTING	b.	C.	a. MAXIMUM I	DAILY VALUE	(if availa		c. LONG TER					a. LONG T AVERAGE V		
(if available)	REQUIRED	BELIEVED PRESENT	ABSENT	(1) CONCENTRATIC	N (2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
METALS, CYANID	E, AND TOT	TAL PHENC	LS								I		CONCENTION	(2) 10/00	
1M. Antimony, Total (7440-36-0)	$ \times $		\times	ND						1	ug/L				
2M. Arsenic, Total (7440-38-2)	\times	\times		1.7						1	ug/L				
3M. Beryllium, Total (7440-41-7)	\times		X	ND						1	ug/L				
4M. Cadmium, Total (7440-43-9)	\times		\times	ND						1	ug/L				
5M. Chromium, Total (7440-47-3)	\times		\times	ND						1	ug/L				
6M. Copper, Total (7440-50-8)	\times	\times		7.9	4.5			2.8	1.0	21	ug/L				
7M. Lead, Total (7439-92-1)	\mathbf{X}		\times	ND						1	ug/L				
8M. Mercury, Total (7439-97-6)	\times		\times	ND						1	ng/L	-			
9M. Nickel, Total (7440-02-0)	\times	\mathbf{X}		9.2						1	ug/L				
10M. Selenium, Total (7782-49-2)			\times	ND						1	ug/L				
11M. Silver, Total (7440-22-4)	\mathbf{X}		\times	ND						1	ug/L				
12M. Thallium, Total (7440-28-0)	\times		\times	ND						1	ug/L				
13M. Zinc, Total (7440-66-6)	\times	X		300	124			97.4	31.9	21	ug/L	lb/d			
14M. Cyanide, Total (57-12-5)	\times		Х	ND						1	ug/L				
15M. Phenols, Total	\times	X		17						1	ug/L				
DIOXIN													L		<u> </u>
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)	\times		\times	DESCRIBE RE	SULTS										
EPA Form 3510-2C	(8-90)						PAGE	V-3					COI		REVERSE

1 間辺に

CONTINUED FROM THE FRONT	
--------------------------	--

		2. MARK "X	n			3. E	FFLUENT	· · · · · · · · · · · · · · · · · · ·			4. UN	ITS	5. INTA	KE (optiona	d)
1. POLLUTANT AND CAS NUMBER	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availai		c. LONG TERM VALUE (if ava	1 AVRG. ailable)				a. LONG T AVERAGE V	ERM	
(if available)	TESTING REQUIRED	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	– VOLATIL	E COMPO	UNDS										CONCENTION	(2) 1017-00	1
1V. Accrolein (107-02-8)	\times		\mathbf{X}	ND						1	ug/L				r
2V. Acrylonitrile (107-13-1)	X		X	ND						1	ug/L				
3V. Benzene (71-43-2)	X		X	ND						1	ug/L				
4V. Bis (Chloro- methyl) Ether (542-88-1)	\times		Х	ND						1	ug/L				
5V. Bromoform (75-25-2)	\times		X	ND						1	ug/L				
6V. Carbon Tetrachloride (56-23-5)	\times		X	ND						1	ug/L				
7V. Chlorobenzene (108-90-7)	\times		X	ND						1	ug/L				
8V. Chlorodi- bromomethane (124-48-1)	\times		Х	ND						1	ug/L				
9V. Chloroethane (75-00-3)	\times		X	ND						1	ug/L				
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	ND						1	ug/L				
11V. Chloroform (67-66-3)	\times		\times	ND						1	ug/L		-		
12V. Dichloro- bromomethane (75-27-4)	\times		X	ND						1	ug/L				
13V. Dichloro- difluoromethane (75-71-8)	\times		\times	ND						1	ug/L				
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	ND						1	ug/L				
15V. 1,2-Dichloro- ethane (107-06-2)	X		\times	ND						1	ug/L				
16V. 1,1-Dichloro- ethylene (75-35-4)	Х		X	ND						1	ug/L				
17V. 1,2-Dichloro- propane (78-87-5)	\times		X	ND						1	ug/L				
18V. 1,3-Dichloro- propylene (542-75-6)	\times		\times	ND						1	ug/L	· · · · ·		,	
19V. Ethylbenzene (100-41-4)	X		\times	ND						1	ug/L			·	
20V. Methyl Bromide (74-83-9)	X		\times	ND						1	ug/L				
21V. Methyl Chloride (74-87-3)	X		X	ND						1	ug/L				
EBA Earm 2510.20															·

A DECK

2.00.8

EPA Form 3510-2C (8-90)

CONTINUE ON PAGE V-5

¢.

a later a

No. No.

7. port

100 A.

Contraction of the local distance

7.4

CONTINUED FROM PAGE V-4

1.000

100

	2	2. MARK "X					FFLUENT				4. UN	ITS	5. INTA	KE (optiona	/)
1. POLLUTANT AND	a,	Ь	c.	a. MAXIMUM DAI		b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (if ava					a, LONG T	ERM	<u> </u>
CAS NUMBER (if available)	TESTING	BELIEVED	BELIEVED	(1) CONCENTRATION		(1) CONCENTRATION	·	(1) CONCENTRATION	<u> </u>	d. NO. OF ANALYSES	a. CONCEN- TRATION	h 11100	AVERAGE V (1)		b. NO. OF
GC/MS FRACTION					(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALTSES	IRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
22V. Methylene Chloride (75-09-2)	X		X	ND						1	ug/L]
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		X	ND						1	ug/L				
24V. Tetrachloro- ethylene (127-18-4)	Х		\times	ND	<u> </u>		·			1	ug/L			<u></u>	
25V. Toluene (108-88-3)	X		X	ND						1	ug/L	·			
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	ND						1	ug/L				
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		X	ND						1	ug/L			· · · · · ·	
28V. 1,1,2-Trichloro- ethane (79-00-5)	X		\times	ND						1	ug/L				
29V Trichloro- ethylene (79-01-6)	\times		X	ND						1	ug/L				
30V. Trichloro- fluoromethane (75-69-4)	\times		\times	ND						1	ug/L	-		·····	
31V. Vinyl Chloride (75-01-4)	Х		Х	ND						1	ug/L				
GC/MS FRACTION	– ACID CO	MPOUNDS	<u> </u>										· I		
1A. 2-Chlorophenol (95-57-8)	\times		\times	ND						1	ug/L				
2A. 2,4-Dichloro- phenol (120-83-2)	X		\times	ND						1	ug/L			•	
3A. 2,4-Dimethyl- phenol (105-67-9)	X		\times	ND						1	ug/L				
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	ND						1	ug/L				
5A. 2,4-Dinitro- phenol (51-28-5)	\times		\times	ND						1	ug/L				
6A. 2-Nitrophenol (88-75-5)	X		\times	ND						1	ug/L				
7A. 4-Nitrophenol (100-02-7)	X		\times	ND						1	ug/L				
8A. P-Chloro-M- Cresol (59-50-7)	X		\times	ND						1	ug/L				
9A. Pentachloro- phenol (87-86-5)	X		X	ND						1	ug/L				
10A. Phenol (108-95-2)	X		X	ND						1	ug/L				
11A. 2,4,6-Trichloro- phenol (88-05-2)	\times		\times	ND						1	ug/L				

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

1

W. A. W.

and the second

á

1

CONTINUED FROM THE FRONT

	2	2. MARK "X	u			3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	ıl)
1. POLLUTANT AND	a.	ь.	C.	a. MAXIMUM DA		b. MAXIMUM 30 [(if availab		c. LONG TERM VALUE (if ava					a. LONG T	ERM	Í
CAS NUMBER (if available)	TESTING	BELIEVED	BELIEVED ABSENT	(1) CONCENTRATION		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	AVERAGE V (1) CONCENTRATION		b. NO. OF
GC/MS FRACTION	– BASE/NE	EUTRAL CO			(2) 11/100	CONCENTION	(2) 14/33	CONCENTRATION	(2) MASS	1.1.1.1.020	non	D. MIAGO	CONCENTRATION	(2) MASS	ANALISES
1B. Acenaphthene (83-32-9)	X		X	ND	:					1	ug/L				
2B. Acenaphtylene (208-96-8)	X		X	ND						1	ug/L				<u>+</u>
3B. Anthracene (120-12-7)	X		X	ND						1	ug/L				
4B. Benzidine (92-87-5)	X		X	ND						1	ug/L				<u> </u>
5B. Benzo (a) Anthracene (56-55-3)	\times		X	ND			-			1	ug/L				
6B. Benzo (a) Pyrene (50-32-8)	X	_	X	ND						1	ug/L				
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		Χ.	ND						1	ug/L				
8B. Benzo (ghi) Perylene (191-24-2)	X		\times	ND						1	ug/L				†
9B. Benzo (k) Fluoranthene (207-08-9)	\times		X	ND						1	ug/L				
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		X	ND						1	ug/L				
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	\times		\times	ND						1	ug/L				
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	ND						1	ug/L				
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	\times		\times	190						1	ug/L				
14B. 4-Bromophenyl Phenyl Ether (101-55-3)	\times		\times	ND						1	ug/L				
15B. Butyl Benzyl Phthalate (85-68-7)	X		\times	ND						1	ug/L				
16B. 2-Chloro- naphthalene (91-58-7)	\times		\times	ND				-		1	ug/L				
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	\times		\times	ND						1	ug/L				
18B. Chrysene (218-01-9)	X		X	ND						1	ug/L				<u> </u>
19B. Dibenzo (a,h) Anthracene (53-70-3)	X		X	ND						1	ug/L				
20B. 1,2-Dichloro- benzene (95-50-1)	X		\mathbf{X}	ND						1	ug/L				
21B. 1,3-Di-chloro- benzene (541-73-1)	\times		\times	ND						1	ug/L				

EPA Form 3510-2C (8-90)

PAGE V-6

CONTINUE ON PAGE V-7

CONTINUED FROM PAGE V-6

		2. MARK "X				3. E	FFLUENT				4. UN	ITS	5 INT4	AKE (optiona	Δ
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (if ava					a. LONG T AVERAGE V	ERM	.,
CAS NUMBER (if available)		PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	· · · ·	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – BASE/N	EUTRAL CO		S (continued)					<u> </u>				00.001	(2) 111 (00	
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	ND						1	ug/L				
23B. 3,3-Dichloro- benzidine (91-94-1)	X		X	ND						1	ug/L				
24B. Diethyl Phthalate (84-66-2)	X		Х	ND						1	ug/L				
25B. Dimethyl Phthalate (131 -11-3)	\times		Х	ND						1	ug/L				
26B. Di-N-Butyl Phthalate (84-74-2)	X		Х	ND						1	ug/L				
27B. 2,4-Dinitro- toluene (121-14-2)	X		Х	ND						1.	ug/L	-			
28B. 2,6-Dinitro- toluene (606-20-2)	X		X	ND			<u></u> _			1	ug/L				
29B. Di-N-Octyl Phthalate (117-84-0)	Х		Х	ND						1	ug/L	-		· · · ·	
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		\times	ND						1	ug/L				· · · · ·
31B. Fluoranthene (206-44-0)	\times		\times	ND						1	ug/L				
32B. Fluorene (86-73-7)	\times		\times	ND						1	ug/L				
33B. Hexachloro- benzene (118-74-1)	\mathbf{X}		\times	ND						1	ug/L	·			
34B. Hexachloro- butadiene (87-68-3)	\times		X	ND						1	ug/L				
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	ND	_					1	ug/L				
36B Hexachloro- ethane (67-72-1)	X		\times	ND						1	ug/L				
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	\times		\times	ND						1	ug/L				
38B. Isophorone (78-59-1)	\mathbf{X}		X	ND						1	ug/L				
39B. Naphthalene (91-20-3)	\mathbf{X}		X	ND						1	ug/L				
40B. Nitrobenzene (98-95-3)	X		\times	ND						1	ug/L				
41B. N-Nitro- sodimethylamine (62-75-9)	X		X	ND						1	ug/L				
42B. N-Nitrosodi- N-Propylamine (621-64-7)	\times		\times	ND						1	ug/L			·	

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

¢,	୍କ	27	-	52.8	$e^{-i\phi_A}$	£.,	36.8	8 N. 1		÷.	10.1	 77
۳.				-					1.000			

96

94 g

3

the Second State

Sector Sector

CONTINUED FRO		2. MARK "X	9				FFLUENT	, , <u></u>			4. UN	ITS	5. INT/	KE (optiona	<u>.</u>
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 [(if availab		C. LONG TERM			······		a. LONG T	ERM	<u> </u>
CAS NUMBER (if available)	TESTING	BELIEVED PRESENT	BELIEVED	(1)		(1)		VALUE (if ava (1)			a. CONCEN-		AVERAGE \ (1)	ALUE	b. NO. OF
GC/MS FRACTION		1		CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	CONCENTRATION	(2) MASS	ANALYSES
43B. N-Nitro- sodiphenytamine (86-30-6)	X		X	ND						1	ug/L				
44B. Phenanthrene (85-01-8)	X		X	ND						1	ug/L				·
45B. Pyrene (129-00-0)	\times		\mathbf{X}	ND						1	ug/L				
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	$ \times $		\times	ND						1	ug/L				
GC/MS FRACTION	- PESTIC	IDES	<u> </u>												<u> </u>
1P. Aldrin (309-00-2)	\times		X	ND						1	ug/L				
2Ρ. α-BHC (319-84-6)	X		X	ND						1	ug/L				
3P. β-BHC (319-85-7)	\times		\times	ND						1	ug/L				
4P. γ-BHC (58-89-9)	X		\times	ND			-			1	ug/L				
5P. δ-BHC (319-86-8)	\times		\times	ND						1	ug/L				
6P. Chlordane (57-74-9)	X		\mathbf{X}	ND						1	ug/L				
7P. 4,4'-DDT (50-29-3)	X		\times	ND						1	ug/L				-
8P. 4,4'-DDE (72-55-9)	X		\times	ND						1	ug/L				
9P. 4,4'-DDD (72-54-8)	X		\times	ND						1	ug/L				
10P. Dieldrin (60-57-1)	X		X	ND						1	ug/L				
11P. α-Enosulfan (115-29-7)	Х			ND						1	ug/L				
12P. β-Endosulfan (115-29-7) 13P. Endosulfan	Х		Х	ND						1	ug/L				
Sulfate (1031-07-8)	\times		\times	ND						1	ug/L	_			
14P. Endrin (72-20-8)	Х		X	ND				-		1	ug/L				
15P. Endrin Aldehyde (7421-93-4)	\times		\times	ND						1	ug/L				
16P. Heptachlor (76-44-8)	\times		\times	ND						1	ug/L				

EPA Form 3510-2C (8-90)

CONTINUE ON PAGE V-9

				EP/	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER				• •		
CONTINUED FRO	M PAGE V-	3			ARI	035466648		SMS	002						
		2. MARK "X"				3. E	FFLUENT				4. UN	ITS	5. INT/	AKE (optiond	al)
1. POLLUTANT AND CAS NUMBER	a.	b.	C.	a. MAXIMUM D	AILY VALUE			c. LONG TERN VALUE (if ava					a, LONG T AVERAGE \	ERM	T
(if available)	REQUIRED	BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I - PESTICI	DES (contin	ued)										Teener		
17P. Heptachlor Epoxide (1024-57-3)	\times		X	ND						1	ug/L		_		
18P. PCB-1242 (53469-21-9)	$ \times $		X	ND						1	ug/L	·			1
19P. PCB-1254 (11097-69-1)	X		Х	ND						1	ug/L		:		
20P. PCB-1221 (11104-28-2)	X		\times	ND						1	ug/L				-
21P. PCB-1232 (11141-16-5)	X		Х	ND						1	ug/L				
22P. PCB-1248 (12672-29-6)	X		Х	ND						1	ug/L				
23P. PCB-1260 (11096-82-5)	X		Х	ND						1	ug/L				
24P. PCB-1016 (12674-11-2)	X		X	ND	1					1	ug/L				
25P. Toxaphene (8001-35-2)	\times		Х	ND					<u> </u>	1	ug/L	w			

EPA Form 3510-2C (8-90)

PAGE V-9

Disclaimer

This is an updated PDF document that allows you to type your information directly into the form, print it, and save the completed form.

Note: This form can be viewed and saved only using Adobe Acrobat Reader version 7.0 or higher, or if you have the full Adobe Professional version.

Instructions:

in the

- 1. Type in your information
- 2. Save file (if desired)
- 3. Print the completed form
- 4. Sign and date the printed copy
- 5. Mail it to the directed contact.

EPA Form 3510-2F (1-92)

Continue on Page 2

	tive Description of Pollutant	utions i company and a second second			
A. For eac draine	ch outfall, provide an estimate of the area (in d by the outfall.	clude units) of imperious surfac	es (including p	paved areas and building roofs) drained to the outfall, and an	estimate of the total surface a
Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)	Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)
001	250 Acres	5000	SMS 002	0	Greater than 10,0 acres
to stor	m water; method of treatment, storage water runoff; materials loading and acc	, or disposal; past and pre	esent materia	three years have been treated, stored or disposed in als management practices employed to minimize cound frequency in which pesticides, herbicides, soil co	ntact by these materials w
or wareho comingled	uses. On the manufacturing :	facility site chemic charge. The process	al storage	t. Additionally, many chemicals are st a areas drain to the process sewers and re routed to the wastewater treatment s	these sewers are
descri	ach outfall, provide the location and a ption of the treatment the storm water solid or fluid wastes other than by disc	receives, including the sch	uctural and r edule and ty	nonstructural control measures to reduce pollutants pe of maintenance for control and treatment measure	in storm water runoff; and res and the ultimate dispos
Outfall Number			reatment		List Codes from Table 2F-1
MS 002					
7. Nonsto A. I certif	ormwater Discharges y under penalty of law hat the outfall(s) covered by this applications in either an	on have been	n tested or evaluated for the presence of nonstormw ring Form 2C or From 2E application for the outfall.	rater discharges, and that
A. I certif	y under penalty of law hat the outfall(s prmwater discharged from these outfall) covered by this applications) are identified in either an ignature	on have been n accompany	ring Form 2C or From 2E application for the outfall.	rater discharges, and that
A. I certif	y under penalty of law hat the outfall(s prmwater discharged from these outfall Official Title (<i>type or print</i>)	s) are identified in either an ignature	n have been n accompany	ring Form 2C or From 2E application for the outfall.	
A. I certif nonsto Name and (ary W. K	y under penalty of law hat the outfall(s ormwater discharged from these outfall Official Title (<i>type or print</i>) aiser	s) are identified in either an ignature (FCUUK	n accompany	ving Form 2C or From 2E application for the outfall.	te Signed 5-4-15
A. I certif nonsto Name and (ary W. K	y under penalty of law hat the outfall(s ormwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the	s) are identified in either an ignature (FCUUK	n accompany	ring Form 2C or From 2E application for the outfall.	te Signed 5-4-15
A. I certif nonsto Name and C ary W. K. B. Provid	y under penalty of law hat the outfall(s ormwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the	s) are identified in either an ignature (FCUUK	n accompany	ving Form 2C or From 2E application for the outfall.	te Signed 5-4-15
A. I certif nonsto lame and (ary W. K. B. Provide Porm 2	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C	s) are identified in either an ignature (FCUUK	n accompany	ving Form 2C or From 2E application for the outfall.	te Signed 5-4-15
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid E. Form 2	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills	s) are identified in either an ignature GCUUK date of any testing, and in	e onsite drai	nage points that were directly observed during a test	te Signed 5-4-15
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid re Form 2 . Signiff Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
. Nonsto A. I certif nonsto lame and (ary W. K B. Provid B. Provid re Form 2 . Signiff Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid re Form 2 . Signiff Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid re Form 2 . Signiff Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid re Form 2 . Signiff Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
A. I certif nonsto Jame and (ary W. K B. Provid Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including t
. Nonsto A. I certif nonsto larre and (ary W. K B. Provid B. Provid Provide e approxima	y under penalty of law hat the outfall(s primwater discharged from these outfall Official Title (<i>type or print</i>) aiser e a description of the method used, the 2C icant Leaks or Spills existing information regarding the hist ate date and location of the spill or leak	s) are identified in either an ignature G CUL K date of any testing, and the date of significant leaks or , and the type and amount	e onsite drai spills of tox of material n	ing Form 2C or From 2E application for the outfall.	te Signed 5-4-15 t three years, including #

• ;

1. 1.

EPA Form 3510-2F (1-92)

und a manage out

and the second

r.

34

-9

.

VII. Discharge Information				
	re proceeding. Complete one set of tables for each or	utfall. Annotate the outfall	number in the	
	I-C are included on separate sheets numbers VII-1 ar			space provided.
E. Potential discharges not covered	by analysis – is any toxic pollutant listed in table	2F-2, 2F-3, or 2F-4, a si	ubstance or a	component of a substanc
	an intermediate or final product or byproduct?			
Yes (list all such polluta		No (go t	o Section IX)	ala .
VIII. Biological Toxicity Testi	ng Data	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Do you have any knowledge or reaso	on to believe that any biological test for acute or chror	nic toxicity has been made	e on any of vo	ur discharges or on a recei
relation to your discharge within the la	ast 3 years?	_		
Yes (list all such polluta	nnts below) sting is conducted every two months as a		Section IX)	
IX. Contract Analysis Informa	ation			
	ation Item VII performed by a contract laboratory or consult	ting firm?		
Were any of the analyses reported in Yes (list the name, addr	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants		Section X)	
Were any of the analyses reported in Yes (list the name, addreaded on analyzed by, each set of the	Item VII performed by a contract laboratory or consul ress, and telephone number of, and pollutants such laboratory or firm below)	No (go to		D. Pollutants Ana
Were any of the analyses reported in Yes (list the name, addr	Item VII performed by a contract laboratory or consul ress, and telephone number of, and pollutants such laboratory or firm below) B. Address	C. Area Code a	& Phone No.	
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consul ress, and telephone number of, and pollutants such laboratory or firm below)	No (go to	& Phone No.	D. Pollutants Ana Acute and Chronic t analysis
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addra analyzed by, each s A. Name	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300,	C. Area Code a	& Phone No.	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addready analyzed by, each s A. Name Environ X. Certification	Item VII performed by a contract laboratory or consul ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code &	k Phone No. 5	Acute and Chronic t
Were any of the analyses reported in Yes (list the name, addressed by, each s A. Name Environ X. Certification I certify under penalty of law that this that qualified personnel property gathe	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code a (615) 377-477	& Phone No. 5	Acute and Chronic t analysis ance with a system designe
Were any of the analyses reported in Yes (list the name, addressed analyzed by, each s A. Name Environ	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code & C. Area Code & (615) 377-477	A Phone No. 5	Acute and Chronic t analysis ance with a system designe o manage the system or the curate and complete 1 am
Were any of the analyses reported in Ves (list the name, addressed by, each s A. Name Environ X. Certification I certify under penalty of law that this that qualified personnel property gathe directly responsible for gathering the	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code & C. Area Code & (615) 377-477	A Phone No. 5 5 ion in accorde or persons whe elief, true, according owing violatio	Acute and Chronic t analysis ance with a system designe o manage the system or the curate and complete 1 am
Were any of the analyses reported in Ves (list the name, addressed by, each s A. Name Environ Certification I certify under penalty of law that this that qualified personnel properly gathe directly responsible for gathering the there are significant penalties for subm A. Name & Official Title (Type Or Print)	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code & C. Area Code & (615) 377-477 (615) or supervis my inquiry of the person of t of my knowledge and b e and imprisonment for kn	A Phone No. 5 5 ion in accorda or persons who elief, true, ac owing violatio none No.	Acute and Chronic t analysis ance with a system designe o manage the system or the curate and complete 1 am
Were any of the analyses reported in	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code and Pt (615) 377-477 (615) 377-	A Phone No. 5 5 ion in accorda or persons who elief, true, ac owing violatio none No.	Acute and Chronic t analysis ance with a system designe o manage the system or the curate and complete 1 am
Were any of the analyses reported in Ves (list the name, addressed by, each s A. Name Environ Certification I certify under penalty of law that this that qualified personnel properly gathe directly responsible for gathering the there are significant penalties for subm A. Name & Official Title (Type Or Print)	Item VII performed by a contract laboratory or consult ress, and telephone number of, and pollutants such laboratory or firm below) B. Address 201 Summit View Dr., Suite 300, Brentwood, TN 37027	C. Area Code & C. Area Code & (615) 377-477 (615) 377-477	A Phone No. 5 5 ion in accorda or persons whe elief, true, ac owing violatio none No. 10	Acute and Chronic t analysis ance with a system designe o manage the system or the curate and complete 1 am

1.

200 B

Sec. A Strategy

		EP	A ID Number (cop	y from Item 1 of Form 1)	7	Form Approved. OMB No. 2040-0086 Approval expires 5-31-92
VII. Discharge	information (Co	ontinued from pag	e 3 of Form 2	F)		
0.11		· · · · · · · · · · · · · · · · · · ·				
Part A – You must		f at least one analysis for num Values			table for each o	utfall. See instructions for additional details.
	(inci	lude units)		erage Values nclude units)	Number	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Oil and Grease	See Form 2C.	N/A				
Biological Oxygen Demand (BOD5)						
Chemical Oxygen Demand (COD)						
Total Suspended Solids (TSS)				· · · ·		
Total Nitrogen						· · · · · · · · · · · · · · · · · · ·
Total Phosphorus						
рH	Minimum	Maximum	Minimum	Maximum		
waste	ach pollutant that is water (if the facility i rements.	limited in an effluent gu s operating under an ex	ideline which the isting NPDES per	facility is subject to or a mit). Complete one table	ny pollutant liste e for each outfal	d in the facility's NPDES permit for its process I. See the instructions for additional details and
		num Values ude units)		erage Values aclude units)	Number	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
See Form 2C	Stormwater is	discharged to	facility	WWTP.		
				· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·				
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				
			<u> </u>			
	· · · · · · · · · · · · · · · · · · ·					
					+	
·						
		, <u>, , , , , , , , , , , , , , , ,</u>			+ - +	· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·					
					I T	

an a the set of the set

9

is (Ar

EPA Form 3510-2F (1-92)

1 yu ⁶1 yi ⁶1 yi

1

Name of Street

797. P

Continue on Reverse

1977 <u>- 5</u>73

2. 2. 2. 2.

rec	t each pollutant shown in Table 2F-2, 2F-3 uirements. Complete one table for each ou Maximum Values		tfall. Average Values					
Pollutant and CAS Number	Grab Sample Taken During	lude units)	(ii Grab Sample Taken During First 20	nclude units)	-	Number of Storm Events	of orm	
(if available)	Minutes	Flow-Weighted Composite	Minutes	Flow-Weighted Composite		Sampled	Sc	ources of Pollutants
	See Form 2C							
								·
				<u> </u>	1			<u> </u>
								·····
	-		1	· · · · ·	+			
								· · · · ·
					† –			
					+			
				· · · · · · · · · · · · · · · · · · ·	+			
		· · · · · · · · · · · · · · · · · · ·			-			
					-			<u> </u>
					+			····
								, <u>.</u>
					1			
		·			+			
		····			-		··	<u> </u>
							······	
					+		······································	
	<u></u>				-	<u>.</u>		
	<u> </u>	<u> </u>			<u> </u>			· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·						<u> </u>
		· · · · · · · · · · · · · · · · · · ·		·	+			
					+			
								•
			· · · · · · · · · · · · · · · · · · ·					
	·			· · · · · · · · · · · · · · · · · · ·			<u> </u>	
							<u> </u>	·····
·								
		I						
art D – Pro	vide data for the sto	orm event(s) which resu	lted in the maximu	um values for the flow we	ighted	composite sa	mple.	
1.	2.	3.		4.			5.	
Date of	2. Duration	J. Total rair	nfali	Number of hours betwee beginning of storm mease	een sured		ow rate during event	6. Total flow from
Storm	of Storm Event	during storm	n event	and end of previous	3	(gallons	/minute or	rain event
Event	(in minutes)	(in inche	es)	measurable rain even	nt	specii	fy units)	(gallons or specify un
		See Form 2C.						
ľ								
7. Dreváda a d		ethod of flow measurem				·		

F7;4

F

مر داني در داني

1. A. A. C. E.

こうれば、そうに、こので、「「「「」」」の「「「「「」」」」であった。 こうしょう しょうしょう しょうしょう しょうしん いたい 御御 かんせい たいかい しんかい しょうしん しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょうしょう しょうしょうしょう

18.18 S.S.S.

Instructions – Form 2F Application for Permit to Discharge Storm Water Associated with Industrial Activity

Who Must File Form 2F

Form 2F must be completed by operators of facilities which discharge storm water associated with industrial activity or by operators of storm water discharges that EPA is evaluating for designation as a significant contributor of pollutants to waters of the United States, or as contributing to a violation of a water quality standard.

Operators of discharges which are composed entirely of storm water must complete Form 2F (EPA Form 3510-2F) in conjunction with Form 1 (EPA Form 3510-1).

Operators of discharges of storm water which are combined with process wastewater (process wastewater is water that comes into direct contact with or results from the production or use of any raw material, intermediate product, finished product, byproduct, waste product, or wastewater) must complete and submit Form 2F, Form 1, and Form 2C (EPA Form 3510-2C).

Operators of discharges of storm water which are combined with nonprocess wastewater (nonprocess wastewater includes noncontact cooling water and sanitary wastes which are not regulated by effluent guidelines or a new source performance standard, except discharges by educational, medical, or commercial chemical laboratories) must complete Form 1, Form 2F, and Form 2E (EPA Form 3510 2E).

Operators of new sources or new discharges of storm water associated with industrial activity which will be combined with other nonstormwater new sources or new discharges must submit Form 1, Form 2F, and Form 2D (EPA Form 3510-2D).

Where to File Applications

The application forms should be sent to the EPA Regional Office which covers the State in which the facility is located. Form 2F must be used only when applying for permits in States where the NPDES permits program is administered by EPA. For facilities located in States which are approved to administer the NPDES permits program, the State environmental agency should be contacted for proper permit application forms and instructions.

Information on whether a particular program is administered by EPA or by a State agency can be obtained from your EPA Regional Office. Form 1, Table 1 of the "General Instructions" lists the addresses of EPA Regional Offices and the States within the jurisdiction of each Office.

Completeness

Your application will not be considered complete unless you answer every question on this form and on Form 1. If an item does not apply to you, enter "NA" (for not applicable) to show that you considered the question.

Public Availability of Submitted Information

You may not claim as confidential any information required by this form or Form 1, whether the information is reported on the forms or in an attachment. Section 402(j) of the Clean Water Act requires that all permit applications will be available to the public. This information will be made available to the public upon request.

Any information you submit to EPA which goes beyond that required by this form, Form 1, or Form 2C you may claim as confidential, but claims for information which are effluent data will be denied.

If you do not assert a claim of confidentiality at the time of submitting the information, EPA may make the information public without further notice to you. Claims of confidentiality will be handled in accordance with EPA's business confidentiality regulations at 40 CFR Part 2.

Definitions

All significant terms used in these instructions and in the form are defined in the glossary found in the General Instructions which accompany Form 1.

EPA ID Number

Fill in your EPA Identification Number at the top of each odd numbered page of Form 2F. You may copy this number directly from item I of Form 1.

EPA Form 3510-2F (Rev. 1-92)

ltem l

You may use the map you provided for item XI of Form 1 to determine the latitude and longitude of each of your outfalls and the name of the receiving water.

Item 11-A

If you check "yes" to this question, complete all parts of the chart, or attach a copy of any previous submission you have made to EPA containing the same information.

Item 11-B

You are not required to submit a description of future pollution control projects if you do not wish to or if none is planned.

Item III

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfall(s) covered in the application if a topographic map is unavailable) depicting the facility including:

each of its drainage and discharge structures;

the drainage area of each storm water outfall;

paved areas and building within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage or disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied;

each of its hazardous waste treatment, storage or disposal facilities (including each area not required to have a RCRA permit which is used for accumulating hazardous waste for less than 90 days under 40 CFR 262.34);

each well where fluids from the facility are injected underground; and

springs, and other surface water bodies which receive storm water discharges from the facility;

Item IV-A

家子にあること

For each outfall, provide an estimate of the area drained by the outfall which is covered by impervious surfaces. For the purpose of this application, impervious surfaces are surfaces where storm water runs off at rates that are significantly higher than background rates (e.g., predevelopment levels) and include paved areas, building roofs, parking lots, and roadways. Include an estimate of the total area (including all impervious areas) drained by each outfall. The site map required under item III can be used to estimate the total area drained by each outfall.

Item IV-B

Provide a narrative description of significant materials that are currently or in the past three years have been treated, stored, or disposed in a manner to allow exposure to storm water; method of treatment, storage or disposal of these materials; past and present materials management practices employed, in the last three years, to minimize contact by these materials with storm water runoff; materials loading and access areas; and the location, manner, and frequency in which pesticides, herbicides, soil conditioners, and fertilizers are applied. Significant materials should be identified by chemical name, form (e.g., powder, liquid, etc.), and type of container or treatment unit. Indicate any materials treated, stored, or disposed of together. "Significant materials" includes, but is not limited to: raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under Section 101 (14) of CERCLA; any chemical the facility is required to report pursuant to Section 313 of Title III of SARA; fertilizers; pesticides; and waste products such as ashes, slag and sludge that have the potential to be released with storm water discharges.

Item IV-C

For each outfall, structural controls Include structures which enclose material handling or storage areas, covering materials, berms, dikes, or diversion ditches around manufacturing, production, storage or treatment units, retention ponds, etc. Nonstructural controls include practices such as spill prevention plans, employee training, visual inspections, preventive maintenance, and housekeeping measures that are used to prevent or minimize the potential for releases of pollutants.

Item V

Provide a certification that all outfalls that should contain storm water discharges associated with industrial activity have been tested or evaluated for the presence of non-storm water discharges which are not covered by an NPDES permit. Tests for such non-storm water discharges may include smoke tests, fluorometric dye tests, analysis of accurate schematics, as well as other appropriate tests. Part B must include a description of the method used, the date of any testing, and the onsite drainage points that were directly observed during a test. All non-storm water discharges must be identified in a Form 2C or Form 2E which must accompany this application (see beginning of instructions under section titled "Who Must File Form 2F" for a description of when Form 2C and Form 2E must be submitted).

Item VI

Provide a description of existing information regarding the history of significant leaks or spills of toxic or hazardous pollutants at the facility in the last three years.

Item VII-A, B, and C

These items require you to collect and report data on the pollutants discharged for each of your outfalls. Each part of this item addresses a different set of pollutants and must be completed in accordance with the specific instructions for that part. The following general instructions apply to the entire item.

General Instructions

Part A requires you to report at least one analysis for each pollutant listed. Parts B and C require you to report analytical data in two ways. For some pollutants addressed in Parts B and C, if you know or have reason to know that the pollutant is present in your discharge, you may be required to list the pollutant and test (sample and analyze) and report the levels of the pollutants in your discharge. For all other pollutants addressed in Parts B and C, you must list the pollutant if you know or have reason to know that the pollutant is present in the discharge, and either report quantitative data for the pollutant or briefly describe the reasons the pollutant is expected to be discharged. (See specific instructions on the form and below for Parts A through C.) Base your determination that a pollutant is present in or absent from your discharge on your knowledge of your raw materials, material management practices, maintenance chemicals, history of spills and releases, intermediate and final products and byproducts, and any previous analyses known to you of your effluent or similar effluent.

A. Sampling: The collection of the samples for the reported analyses should be supervised by a person experienced in performing sampling of industrial wastewater or storm water discharges. You may contact EPA or your State permitting authority for detailed guidance on sampling techniques and for answers to specific questions. Any specific requirements contained in the applicable analytical methods should be followed for sample containers, sample preservation, holding times, the collection of duplicate samples, etc. The time when you sample should be representative, to the extent feasible, of your treatment system operating properly with no system upsets. Samples should be collected from the center of the flow channel, where turbulence is at a maximum, at a site specified in your present permit, or at any site adequate for the collection of a representative sample.

For pH, temperature, cyanide, total phenols, residual chlorine, oil and grease, and fecal coliform, grab samples taken during the first 30 minutes (or as soon thereafter as practicable) of the discharge must be used (you are not required to analyze a flow-weighted composite for these parameters). For all other pollutants both a grab sample collected during the first 30 minutes (or as soon thereafter as practicable) of the discharge and a flow-weighted composite sample must be analyzed. However, a minimum of one grab sample may be taken for effluents from holding ponds or other impoundments with a retention period of greater than 24 hours.

All samples shall be collected from the discharge resulting from a storm event that is greater than 0.1 inches and at least 72 hours from the previously measurable (greater than 0.1 inch rainfall) storm event. Where feasible, the variance in the duration of the event and the total rainfall of the event should not exceed 50 percent from the average or median rainfall event in that area.

A grab sample shall be taken during the first thirty minutes of the discharge (or as soon thereafter as practicable), and a flow-weighted composite shall be taken for the entire event or for the first three hours of the event.

Grab and composite samples are defined as follows:

Grab sample: An individual sample of at least 100 milliliters collected during the first thirty minutes (or as soon thereafter as practicable) of the discharge. This sample is to be analyzed separately from the composite sample.

Flow-weighted Composite sample: A flow-weighted composite sample may be taken with a continuous sampler that proportions the amount of sample collected with the flow rate or as a combination of a minimum of three sample aliquots taken in each hour of discharge for the entire event or for the first three hours of the event, with each aliquot being at least 100 milliliters and collected with a minimum period of fifteen minutes between aliquot collections. The composite must be flow proportional; either the time interval between each aliquot or the volume of each aliquot must be proportional to either the stream flow at the time of sampling or the total stream flow since the collection of the previous aliquot. Aliquots may be collected manually or automatically. Where GC/MS Volatile Organic Analysis (VOA) is required, aliquots must be combined in the laboratory immediately before analysis. Only one analysis for the composite sample is required.

Data from samples taken in the past may be used, provided that:

All data requirements are met;

Sampling was done no more than three years before submission; and

All data are representative of the present discharge.

Among the factors which would cause the data to be unrepresentative are significant changes in production level, changes in raw materials, processes, or final products, and changes in storm water treatment. When the Agency promulgates new analytical methods in 40 CFR Part 136, EPA will provide information as to when you should use the new methods to generate data on your discharges. Of course, the Director may request additional information, including current quantitative data, if they determine it to be necessary to assess your discharges. The Director may allow or establish appropriate site-specific sampling procedures or requirements including sampling locations, the season in which the sampling takes place, the minimum duration between the previous measurable storm event and the storm event sampled, the minimum or maximum level of precipitation required for an appropriate storm event, the form of precipitation sampled (snow melt or rainfall), protocols for collecting samples under 40 CFR Part 136, and additional time for submitting data on a case-by-case basis.

B. Reporting: All levels must be reported as concentration and mass (note: grab samples are reported in terms of concentration). You may report some or all of the required data by attaching separate sheets of paper instead of filling out pages VII-1 and VII-2 if the separate sheets contain all the required information in a format which is constant with pages VII-1 and VII-2 in spacing and identification of pollutants and columns. Use the following abbreviations in the columns headed "Units."

Mass

ppm	parts per million	lbs	pounds
mg/1	milligrams per liter	ton	tons (English tons)
ppb	parts per billion	mg	milligrams
ug/1	micrograms per liter	g	grams
kg	kilograms	т	tonnes (metric tons)

Concentration

All reporting of values for metals must be in terms of "total recoverable metal," unless:

(1) An applicable, promulgated effluent limitation or standard specifies the limitation for the metal in dissolved, valent, or total form; or

(2) All approved analytical methods for the metal inherently measure only its dissolved form (e.g., hexavalent chromium); or

(3) The permitting authority has determined that in establishing case-by-case limitations it is necessary to express the limitations on the metal in dissolved, valent, or total form to carry out the provisions of the CWA. If you measure only one grab sample and one flow-weighted composite

sample for a given outfall, complete only the "Maximum Values" columns and insert "1" into the "Number of Storm Events Sampled" column. The permitting authority may require you to conduct additional analyses to further characterize your discharges.

If you measure more than one value for a grab sample or a flow-weighted composite sample for a given outfall and those values are representative of your discharge, you must report them. You must describe your method of testing and data analysis. You also must determine the average of all values within the last year and report the concentration and mass under the "Average Values" columns, and the total number of storm events sampled under the "Number of Storm Events Sampled" columns.

C. Analysis: You must use test methods promulgated in 40 CFR Part 136; however, if none has been promulgated for a particular pollutant, you may use any suitable method for measuring the level of the pollutant in your discharge provided that you submit a description of the method or a reference to a published method. Your description should include the sample holding time, preservation techniques, and the quality control measures which you used. If you have two or more substantially identical outfalls, you may request permission from your permitting authority to sample and analyze only one outfall and submit the results of the analysis for other substantially identical outfalls. If your request is granted by the permitting authority, on a separate sheet attached to the application form, identify which outfall you did test, and describe why the outfalls which you did not test are substantially identical to the outfall which you did test.

Part VII-A

Part VII-A must be completed by all applicants for all outfalls who must complete Form 2F.

Analyze a grab sample collected during the first thirty minutes (or as soon thereafter as practicable) of the discharge and flow-weighted composite samples for all pollutants in this Part, and report the results except use only grab samples for pH and oil and grease. See discussion in General Instructions to Item VII for definitions of grab sample collected during the first thirty minutes of discharge and flow-weighted composite sample. The "Average Values" column is not compulsory but should be filled out if data are available.

Part VII B

List all pollutants that are limited in an effluent guideline which the facility is subject to (see 40 CFR Subchapter N to determine which pollutants are limited in effluent guidelines) or any pollutant listed in the facility's NPDES permit for its process wastewater (if the facility is operating under an existing NPIDES permit). Complete one table for each outfall. See discussion in General instructions to item VII for definitions of grab sample collected during the first thirty minutes (or as soon thereafter as practicable) of discharge and flow-weighted composite sample. The "Average Values" column is not compulsory but should be filled out if data are available.

Analyze a grab sample collected during the first thirty minutes of the discharge and flow-weighted composite samples for all pollutants in this Part, and report the results, except as provided in the General Instructions.

Part VII-C

Part V11-C must be completed by all applicants for all outfalls which discharge storm water associated with industrial activity, or that EPA is evaluating for designation as a significant contributor of pollutants to waters of the United States, or as contributing to a violation of a water quality standard. Use both a grab sample and a composite sample for all pollutants you analyze for in this part except use grab samples for residual chlorine and fecal coliform. The "Average Values" column is not compulsory but should be filled out if data are available. Part C requires you to address the pollutants in Table 2F-2, 2F-3, and 2F-4 for each outfall. Pollutants in each of these Tables are addressed differently.

Table 2F-2: For each outfall, list all pollutants in Table 2F-2 that you know or have reason to believe are discharged (except pollutants previously listed in Part VII-B). If a pollutant is limited in an effluent guideline limitation which the facility is subject to, the pollutant must be analyzed and reported in Part VII-B. If a pollutant in Table 2F-2 is indirectly limited by an effluent guideline limitation through an indicator (e.g., use of TSS as an indicator to control the discharge of iron and aluminum), you must analyze for it and report the data in Part VII-B. For other pollutants listed in Table 2F-2 (those not limited directly or indirectly by an effluent limitation guideline), that you know or have reason to believe are discharged, you must either report quantitative data or briefly describe the reasons the pollutant is expected to be discharged.

Table 2F-3: For each outfall, list all pollutants in Table 2F-3 that you know or have reason to believe are discharged. For every pollutant in Table 2F-3 expected to be discharged in concentrations of 10 ppb or greater, you must submit quantitative data. For acrolein, acrylonitrile, 2,4 dinitrophenol, and 2-methyl-4,6 dinitrophenol, you must submit quantitative data if any of these four pollutants is expected to be discharged in concentrations less than 10 ppb (or 100 ppb for the four pollutants listed above), then you must either submit quantitative data or briefly describe the reasons the pollutant is expected to be discharged.

Small Business Exemption - If you are a "small business," you are exempt from the reporting requirements for the organic toxic pollutants listed in Table 2F-3. There are two ways in which you can qualify as a small business". If your facility is a coal mine, and if your probable total annual production is less than 100,000 tons per year, you may submit past production data or estimated future production (such as a schedule of estimated total production under 30 CFR 795.14(c)) instead of conducting analyses for the organic toxic pollutants. If your facility is not a coal mine, and if your gross total annual sales for the most recent three years average less than \$100,000 per year (in second quarter 1980 dollars), you may submit sales data for those years instead of conducting analyses for the organic toxic pollutants. The production or sales data must be for the facility which is the source of the discharge. The data should not be limited to production or sales for the process or processes which contribute to the discharge, unless those are the only processes at your facility. For sales data, in situations involving intracorporate transfer of goods and services, the transfer price per unit should approximate market prices for those goods and services as closely as possible. Sales figures for years after 1980 should be indexed to the second quarter of 1980 by using the gross national product price deflator (second quarter of 1980=100). This index is available in National Income and Product Accounts of the United States (Department of Commerce, Bureau of Economic Analysis).

Table 2F-4: For each outfall, list any pollutant in Table 2F-4 that you know or believe to be present in the discharge and explain why you believe it to be present. No analysis is required, but if you have analytical data, you must report them. Note: Under 40 CFR 117.12(a)(2), certain discharges of hazardous substances (listed at 40 CFR 177.21 or 40 CFR 302.4) may be exempted from the requirements of section 311 of CWA, which establishes reporting requirements, civil penalties, and liability for cleanup costs for spills of oil and hazardous substances. A discharge of a particular substance may be exempted if the origin, source, and amount of the discharged substances are identified in the NPDES permit application or in the permit, if the permit contains a requirement for treatment of the discharge, and if the treatment is in place. To apply for an exclusion of the discharge of any hazardous substance from the requirements of section 311, attach additional sheets of paper to your form, setting forth the following information:

- 1. The substance and the amount of each substance which may be discharged.
- 2. The origin and source of the discharge of the substance.
- 3. The treatment which is to be provided for the discharge by;
 - a. An onsite treatment system separate from any treatment system treating your normal discharge;
 - b. A treatment system designed to treat your normal discharge and which is additionally capable of treating the amount of the substance identified under paragraph 1 above; or
 - c. Any combination of the above.

See 40 CFR 117.12(a)(2) and (c), published on August 29, 1979, in 44 FR 50766, or contact your Regional Office (Table I on Form 1, Instructions), for further information on exclusions from section 311.

Part VII-D

If sampling is conducted during more than one storm event, you only need to report the information requested in Part VII-D for the storm event(s) which resulted in any maximum pollutant concentration reported in Part VII-A, VII-B, or VII-C.

Provide flow measurements or estimates of the flow rate, and the total amount of discharge for the storm event(s) sampled, the method of flow measurement, or estimation. Provide the data and duration of the storm event(s) sampled, rainfall measurements, or estimates of the storm event which generated the sampled runoff and the duration between the storm event sampled and the end of the previous measurable (greater than 0.1 inch rainfall) storm event.

Part VII-E

List any toxic pollutant listed in Tables 2F-2, 2F-3, or 2F-4 which you currently use or manufacture as an intermediate or final product or byproduct. In addition, if you know or have reason to believe that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is discharged or if you use or manufacture 2,4,5-trichlorophenoxy acetic acid (2,4,5,-T); 2-(2,4,5-trichlorophenoxy) propanoic acid (Silvex, 2,4,5,-TP); 2-(2,4,5-trichlorophenoxy) ethyl, 2,2-dichloropropionate (Erbon); 0,0-dimethyl 0-(2,4,5-trichlorophenyl) phosphorothioate (Ronnel); 2,4,5-trichlorophenol (TCP); or hexachlorophene (HCP); then list TCDD. The Director may waive or modify the requirement if you demonstrate that it would be unduly burdensome to identify each toxic pollutant and the Director has adequate information to issue your permit. You may not claim this information as confidential; however, you do not have to distinguish between use or production of the pollutants or list the amounts.

Item VIII

Self explanatory. The permitting authority may ask you to provide additional details after your application is received.

Item X

日本のもういたのというというというと

The Clean Water Act provides for severe penalties for submitting false information on this application form.

Section 309(c)(4) of the Clean Water Act provides that "Any person who knowingly makes any false material statement, representation, or certification in any application, . . . shall upon conviction, be punished by a fine of not more than \$10,000 or by imprisonment for not more than 2 years, or by both. If a conviction of such person is for a violation committed after a first conviction of such person under this paragraph, punishment shall be by a fine of not more than \$20,000 per day of violation, or by imprisonment of not more than 4 years, or by both." 40 CFR Part 122.22 requires the certification to be signed as follows:

(A) For a corporation: by a responsible corporate official. For purposes of this section, a responsible corporate official means (i) a president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation or (ii) the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25,000,000 (in second quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

Note: EPA does not require specific assignments or delegation of authority to responsible corporate officers identified in 122.22(a)(1)(i) The Agency will presume that these responsible corporate officers have the requisite authority to sign permit applications unless the corporation has notified the Director to the contrary. Corporate procedures governing authority to sign permit applications may provide for assignment or delegation to applicable corporate position under 122.22(a)(1)(ii) rather than to specific individuals.

(B) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or

(C) For a municipality, State, Federal, or other public agency: by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes (i) the chief executive officer of the agency, or (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).

EPA Form 3510-2F (Rev. 1-92)

Table 2F-1 **Codes for Treatment Units**

Physical Treatment Processes

ritysical frequinent rivesses							
1-A	Ammonia Stripping	1-M	Grit Removal				
1-B	Dialysis	1-N	Microstraining				
1-C	Diatomaceous Earth Filtration	1-0	Mixing				
1-D	Distillation	1-P	Moving Bed Filters				
1-E	Electrodialysis	1-Q	Multimedia Filtration				
1-F	Evaporation	1-R	Rapid Sand Filtration				
1-G	Flocculation	1-S	Reverse Osmosis (Hyperfiltration)				
1-H	Flotation	1-T	Screening				
1-1	Foam Fractionation	1-U	Sedimentation (Setting)				
1-J	Freezing	1-V	Slow Sand Filtration				
1-K	Gas-Phase Separation	1-W	Solvent Extraction				
1-L	Grinding (Comminutors)	1-X	Sorption				
• =	• •••••••••••••••••••••••••••••••••••		•				
	Chemical Trea	atment Processe	s				
2-A	Carbon Adsorption	2-G	Disinfection (Ozone)				
2-B	Chemical Oxidation	2-H	Disinfection (Other)				
2-C	Chemical Precipitation	2-1	Electrochemical Treatment				
2-D	Coagulation	2-J	lon Exchange				
2-E	Dechlorination	2-K	Neutralization				
2-F	Disinfection (Chlorine)	2-L	Reduction				
	· · · · ·						
	Biological Trea	atment Processe	25				
3-A	Activated Sludge	3-E	Pre-Aeration				
3-B	Aerated Lagoons	3-F	Spray Irrigation/Land Application				
3-C	Anaerobic Treatment	3-G	Stabilization Ponds				
3-D	Nitrification-Denitrification	3-H	Trickling Filtration				
	Other	Processes					
4-A	Discharge to Surface Water	4-C	Bouloo/Boovelo of Treated Effluent				
4-B	Ocean Discharge Through Outfall	4-C 4-D	Reuse/Recycle of Treated Effluent Underground Injection				
4-0	Ocean Discharge Through Outlan	4-0	Underground Injection				
	Sludge Treatment a	nd Disposal Pro	Cesses				
5-A	Aerobic Digestion	5-M	Heat Drying				
5-B	Anaerobic Digestion	5-N	Heat Treatment				
5-C	Belt Filtration	5-0	Incineration				
5-D	Centrifugation	5-P	Land Application				
5-E	Chemical Conditioning	5-0	Landfill				
5-F	Chlorine Treatment	5-R	Pressure Filtration				
5-G	Composting	5-S	Pyrolysis				
5-H	Drying Beds	5-T	Sludge Lagoons				
5-I	Elutriation	5-U	Vacuum Filtration				
5-J	Flotation Thickening	5-V	Vibration				
5-K	Freezing	5-W	Wet Oxidation				
5-1	Gravity Thickening						

EPA Form 3510-2F (Rev. 1-92)

Flotation Thickening Freezing Gravity Thickening

5-L

*A Contractor and

Table 2F-2

Conventional and Nonconventional Pollutants

Bromide Chlorine, Total Residual Color Fecal Coliform Fluoride Nitrate-Nitrite Nitrogen, Total Organic Oil and Grease Phosphorus, Total Radioactivity Sulfate Sulfite Surfactants Aluminum, Total Barium, Total Boron, Total Cobalt Total Iron, Total Magnesium, Total Manganese, Total Tin, Total Titanium, Total

●「「「「」」」では、「「」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」」では、「」」」」では、「」」」」」では、「」」」」」では、「」」」」」」」」、「」」」」」、「」

Table 2F-3

Toxic Pollutants

Toxic Pollutants and Total Phenol

Copper, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total

GC/MS Fraction Volatiles Compounds

Dichlorobromomethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloropropane 1.3-Dichloropropylene Ethylbenzene Methyl Bromide Methyl Chloride Methylene Chloride

Acid Compounds

2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol p-Chloro-M-Cresol

Base/Neutral

2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)anthracene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3'-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Dimethyl Phthalate 2,4-Dinitrotoluene 2,6-Dinitrotoluene Di-N-Octyphthalate 1,2-Diphenylhydrazine (as Azobenzene)

Pesticides

Dieldrin Alpha-Endosulfan Beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide PCB-1242 Silver, Total Thallium, Total Zinc, Total Cyanide, Total Phenols, Total

1,1,2,2,-Tetrachloroethane Tetrachloroethylene Toluene 1,2-Trans-Dichloroethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride

Pentachlorophenol Phenol 2,4,6-Trichlorophenol 2-methyl-4,6 dinitrophenol

Fluroranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone Napthalene Nitrobenzene N-Nitrosodimethylamine N-Nitrosodi-N-Propylamine N-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene

PCB-1254 PCB-1221 PCB-1232 PCB-1248 PGB-1260 PCB-1016 Toxaphene

Arsenic, Total Beryllium, Total Cadmium, Total Chromium, Total

Antimony, Total

Acrolein Acrylonitrile Benzene Bromoform Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethylvinyl Ether Chloroform

2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-O-Cresol

時、時間に

Acenaphthene Acenaphthylene Anthracene Benzidine Benzo(a)anthracene Benzo(a)pyrene 3,4-Benzofluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether Bis(2-chloroisopropyl)ether Bis(2-ethylyhexyl)phthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate

Aldrin Alpha-BHC Beta-BHC Gamma-BHC Delta-BHC Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD

Table 2F-4

Hazardous Substances

Toxic Pollutant

Hazardous Substances

Dinitrobenzene Diquat Disulfoton Diuron Epichlorohydrin Ethion Ethylene diamine Ethylene dibromide Formaldehyde Furfural Guthion Isoprene Isopropanolamine Kelthane

Kepone Malathion

Mercaptodimethur Methoxychlor

Methyl mercaptan Methyl methacrylate Methyl parathion Mevinphos Mexacarbate Monoethyl amine Nonomethyl amine Naled

Nitrotoluene Parathion Phenolsulfonate Phosaene Propargite Propylene oxide Pyrethrins Quinoline Resorcinol Stronthium Strychnine Styrene 2,4,5-T (2,4,5-Trichlorophenoxyacetic acid) TDE (Tetrachlorodiphenyl ethane) 2,4,5-TP [2-(2,4,5-Trichlorophenoxy) propanoic acid] Trichlorofan Triethylamine

Trimethylamine Uranium Vanadium Vinyl acetate Xylene Xylenol Zirconium

Napthenic acid

Asbestos

Acetaldehyde Allyl alcohol Allyl chloride Amyl acetate Aniline . Benzonitrile Benzyl chloride Butyl acetate Butylamine Carbaryl Carbofuran Carbon disulfide Chlorpyrifos Coumaphos

Cresol Crotonaldehyde

の「日本の学人」」というと言いた。「「「「「「」」」」というないで、「」」」というないで、「」」」」というないで、「」」」」」というないで、「」」」」」」」

Cyclohexane 2,4-D (2,4-Dichlorophenoxyacetic acid) Diazinon Dicamba Dichlobenil Dichlone 2,2-Dichloropropionic acid Dichlorvos Diethyl amine Dimethyl amine

This section identifies the processes associated with Georgia-Pacific LLC's manufacturing complex located in Crossett, Arkansas. The complex is made up of three distinct operations: a pulp and paper mill, a plywood plant/stud mill and a chemical plant. The pulp and paper mill also has an associated extrusion plant that applies a coating to bleached board. All three of these operations have the potential to operate twenty-four (24) hours per day, seven (7) days per week, and fifty-two (52) weeks per year.

Paper Operations Process Description

Chips are received at the facility by truck and rail. Upon unloading, the chips are pneumatically blown to the distribution tower and are then dropped onto the chip piles. Round logs are also received at the facility. After storage, the logs are transported to the debarking drums for bark removal. The debarked logs are fed to the chipper and the produced chips are then conveyed to the chip piles. The chips from the chip piles are screened prior to entering the chip silos. Rejected chips from the screening are burned in the facility's combination boilers. The removed bark is pneumatically sent to bark piles for storage and eventual use in the facility's boilers.

The chips from the silos are conveyed to the Mill's batch digesters. The function of the digesters is to cook the chips using white liquor and steam from the boilers. In the digestion process, these raw materials are combined and cooked at a set pressure and temperature until the desired pulp quality is obtained. At the end of each "cook", the blow valves at the bottom of the digesters are opened, with the resulting pressure forcing the pulp mass through a blow line into blow tanks.

The blow tanks are at atmospheric pressure and the contents of the digesters enter the blow tanks tangentially at the top. When the chips hit the lower pressure in the tank, the liquor and water flash, blowing the chips apart to produce the pulp fibers. The vapors from the blow tanks are sent to the blow heat condensing system, where non-condensable gases (NCGs) are removed. The steam vapors are condensed in the accumulator. The accumulator water is sent to the stripper and returned to the washers as clean condensate. Knots (e.g. undercooked wood chips, irregularly shaped or overly thick pieces of wood, etc.) are removed with the use of vibrating knotters/screens, pressed and trucked to the chip pile for repulping.

The pulp is washed to remove spent cooking chemicals. In the washers, the wash water and pulp move in counter current directions. The washed pulp is passed through screening and cleaning stages which remove debris from the stock. After screening, the pulp passes through the decker system, which thickens the pulp for storage in high density storage chests.

The unbleached Kraft pulp is taken from the high density storage chests for further processing in the bleach plant. The bleaching process removes the remaining lignin and color from the unbleached pulp. Bleaching is performed in several stages using chlorine dioxide, caustic soda, oxygen, and hydrogen peroxide.

Recovery describes the set of operations that recovers the spent cooking chemicals for reuse in the digesters. The recovery process utilizes a multi-effect evaporator to concentrate weak black liquor. The concentrated black liquor is burned in the Mill's recovery furnace producing steam

and energy. The spent chemicals leave the recovery furnace from the bottom in a molten form and enter the smelt dissolving tanks. In the smelt dissolving tanks, molten inorganic salts react with weak wash water to form green liquor. This green liquor is then treated with slaked lime to form white liquor. The white liquor is then ready for use as the main cooking liquor in the digesters.

Paper products are currently manufactured on various paper machines and paper extruding machines. The paper machines include board and tissue machines. Each machine has its own stock preparation, head box, wire section, press section, dryer sections, coater section, calendar stacks, reel, and drum winder. One board machine is capable of producing fine paper.

Tissue and towel converting includes the operations involved with converting large parent rolls of tissue/towel from the machines into finished product. This includes rewinding onto smaller sized rolls, folding, printing, cutting, packaging, and shipping.

Bleached board from the bleached board machines is sent across US highway 82 by rail to the extrusion plant. The extruding machines utilize board from the board paper machines and from outside board customers and apply a polymer coating. Rolls of board are loaded onto an unwind stand before passing through a calendar stack, where they are subjected to burners which flame seal the board. An extruded poly sheet is then pressed together with the board.

Crossett Paper Operations utilizes four fossil fuel-fired steam generating units and a recovery furnace to provide steam and power to the pulp and paper manufacturing process. Two of the boilers (9A and 10A) utilize wet scrubbers that discharge to the sewer. The recovery furnace utilizes a wet electrostatic precipitator that also discharges to the sewer. Other devices such as the smelt dissolving tank and lime kiln also have wet scrubbers that discharge to the sewer.

Paper Operations Water Treatment

Approximately 45 million gallons of water is used daily to operate the mill. The majority of this water comes from the Saline River via GP Lake. Water is pumped from the Saline River into GP Lake. GP Lake provides a ready reservoir of fresh water for the mill as needed. Water is then pumped several miles from the lake to Cemetery Pond at the mill site. From Cemetery Pond, water is drawn as needed into the water treatment plant for treatment. Polyaluminum chloride, polymer, and chlorine dioxide are used to treat the water, and pH of the water is also adjusted. Water filter backwash and sludge is either recycled to the head of the water treatment plant or sewered. Treated water is then used in the various mill operations.

A portion of the water used by mill operations is also supplied from several groundwater wells. The water is treated with polyphosphate and chlorine dioxide or chlorine gas for disinfection and used within the Paper Mill for potable water uses and cooling water.

Plywood Facility Process Description

The Plywood Facility receives logs for processing into plywood. This facility consist of two plywood plants under one roof, both of which produce plywood panels. To begin, incoming logs

are unloaded in the Logyard debarking area. The log debarkers remove the bark from the logs before the logs are sent to the cutoff saws. The bark is mechanically conveyed to the bark shredder where it is shredded before being conveyed to the fuel bin. The cutoff saws trim the raw debarked logs to the desired length. The logs are sent to either Plant 1 or Plant 2 for processing. The trimmed-off ends of the logs are sent to the lilypad chippers where they are chipped before being sent to the fuel bin for transfer to the boilers. The shaker screen, which is also located between the plants, receives chips from the core chippers, the roundup chippers, and the veneer chippers. Oversized chips are sent to the rechipper and then back to the shaker screen. The green chips are shipped off site via rail car or trucks and the throughs are pneumatically conveyed to the fuel bin. The sized logs proceed to the soaking vats for conditioning. After soaking in the vats, the logs are mechanically conveyed to the green end processes, which include the lathes and the veneer clippers. The Green veneer is then dried in the veneer dryers. Dry veneer is transferred to the Gluelines where the plywood is laid up and glue is applied to the veneer. After glueing, the panels are pressed at the Presses. After pressing, the panels are finished by the skinner saws, spec saws or sanders.

In the dryers, the veneer is dried using steam that is generated by the wood-fired boilers. The woodfired boilers combust the wood residuals generated by both Plants 1 and 2. Ash associated with the burning of wood fuel is collected by venturi scrubbers and sluiced to the P3 process sewer, where it is conveyed to the ash settling basins in the wastewater treatment facility. Vat water and other process and non-process waters may also be directed to the sewer periodically. This is allowed for an existing timber products complex as described in the original issuance of the Timber Products Effluent Guidelines (39 FR 13943).

The Plywood operation has been curtailed since October of 2011.

Studmill Facility Process Description

S S ALL S ALL S ALL S

Cores from offsite sources are unloaded in the woodyard. Low quality cores are shipped offsite. The cores of higher quality proceed to the sawing and sizing process where both ends of the cores are trimmed to the desired length, and the cores are cut according to product specifications. Wood residuals and sawdust from this operation are mechanically conveyed to the chipper, which chips the wood residuals into smaller pieces. These pieces are then conveyed to a shaker screen. The throughs from the screen are shipped offsite while the fines are mechanically conveyed to the boiler. The green lumber proceeds to either the high temperature kiln or the conventional kiln. The kilns, which are indirectly heated using steam generated from the boiler at the plywood facility, dry the wood to the desired moisture content. The roughcut dry lumber is planed before being sent to the retrim saw or the rip and chop saws, which trim the wood to customer specifications. The planer shavings generated by the planer are pneumatically conveyed to truck loading via cyclone and then shipped offsite. Some lumber may be sent to edge sealing operations where the ends are spray painted and stenciled with the Georgia-Pacific logo. Studs may be stored prior to being shipped offsite.

The Studmill operation has been curtailed since October of 2011.

Chemical Plant Process Description

The Crossett chemical complex contains a Resins facility consisting of manufacturing plants for the production of formaldehyde, urea formaldehyde concentrate, liquid resins, and spray dried resins. The complex also has a Tall Oil facility consisting of a tall oil distillation unit, a rosin size plant, and a rosin derivatives and pastilles plant. The chemical complex has an extensive system of pipes, concrete impoundments, trenches, sumps, and containment structures used to convey wastewater produced by various processes and maintenance activities, storm water that falls within process areas, storm water that falls outside of process areas, along with the sanitary sewer. At the Resins facility, these streams flow from the point of generation through a variety of conveyances to the P3 sewer for treatment in the adjacent paper mill's wastewater treatment system. At the Tall Oil facility, process streams and wastewater/storm water collected in various collection sumps flow through an oil-water separator and odor control system before discharging to the P3 sewer for treatment in the P3 sewer. The complex's sanitary sewer discharges directly to the P3 sewer.

Wastewater Treatment

いたい ちょうい ちょうちょう

Wastewater from the Crossett Complex is collected in the mill in three sewers: the P1, P2 and P3 sewers. The P2 sewer discharges to the P1 sewer prior to leaving the mill site. Certain chemical pretreatments for pH adjustment or controlling conditions that could produce odors may be practiced on the mill site. These odor control systems include but may not be limited to a peroxide/organic iron catalyst system; iron salts and/or oxygen injected into the wastewater. The P1 and P3 sewers then are piped by gravity approximately one mile to the wastewater treatment area.

In the primary clarifier area, pH adjustment may be accomplished on either the P1 or P3 sewer with the addition of caustic. Additionally, several odor control systems may be used to control conditions that could potentially produce odorous emissions from the primary clarifier area. These systems include but may not be limited to a peroxide/organic iron catalyst system; iron salts and/or oxygen injected into the wastewater.

The P1 sewer combines wastewater from the paper machines, pulping operations, recovery, and woodyard operations and then flows to the primary clarifier to settle a large majority of settable solids. Sludge from the clarifier is pumped to a dewatering operation, and the sludge is dewatered on dewatering machines. Filtrate from the dewatering operation is returned to the sewer downstream of the clarifier. Dewatered sludge taken to the sludge pond reclamation area for closure of a former sludge pond. Once the closure is complete, sludge will be disposed in the mill's north landfill or utilized in an approved beneficial reuse manner. In the event of a maintenance outage, a high solids loading or high storm water flow to the primary clarifier, wastewater may be routed around the primary clarifier directly to the ash basins as a sole means of primary solids treatment and removal.

Clarified water from the primary clarifier combines with the P3 sewer and then flows by gravity to the two ash settling basins via a manmade channel. The wastewater in the P3 sewer includes

boiler scrubber water from the Complex power boilers. One ash basin is in service at a time while the other ash basin is being dredged for solids removal. In the ash basins, ash is settled and mechanically removed to the side of the basin. Ash is allowed to dewater and then trucked to the sludge pond reclamation area for closure. Once the sludge pond reclamation area closure is complete, ash will be disposed in the mill's north landfill or utilized in an approved beneficial reuse manner.

The surge basin is used to control hydraulic and organic loads to increase the efficiency of biological treatment in the aerated stabilization basin. Gates on the discharge structure from the surge basin control the outlet flow. After the surge basin, a nutrient solution containing nitrogen and phosphorus may be added to provide sufficient nutrients for proper degradation of organic wastes. Acid may also be added before and after the surge basin to adjust pH prior to biological treatment. The treated wastewater from the City of Crossett's wastewater ponds also discharges into the manmade channel downstream of the surge basin. This wastewater flows via the manmade open channel into the aerated stabilization basin.

2

A presettling basin (not yet installed) will allow for residual solids removal prior to the aeration basin at the downstream end of the manmade channel. Wastewater entering the aerated stabilization basin is treated by aerating the wastewater to supply adequate oxygen for proper aerobic biological degradation of wastes. Additional aeration capacity is in place; thus, it is not necessary to operate all of the aerators at all times in order to supply sufficient oxygen for adequate treatment. In order to optimize aeration, new aerators of more energy efficient designs are also presently being evaluated for installation and replacement of the existing aeration system. After aerated biological treatment, biological solids are allowed to settle in a quiescent zone. Polymer or iron salts may be added to assist with settling. Settled solids in the ASB system are dredged to a contiguous section of the aeration basin (the dredged spoils area) for solids dewatering and eventual trucking to the sludge pond reclamation area for closure of that area. Once the sludge reclamation area is closed, the dewatered dredged solids will be disposed in the mill's north landfill or utilized in an approved beneficial reuse manner.

Wastewater exiting the aeration stabilization basin is treated with defoamer and then discharges through Outfall 001 where the treated wastewater is sampled and the flow measured in a Parshall flume. Treated wastewater from the flume enters an earthen manmade channel, and eventually flows to the upper reaches of Mossy Lake, then flows to the Ouachita River via Coffee Creek.

At the exit of Mossy Lake, flow is regulated by a flow control structure. During unflooded periods as described in the permit, this point (SMS 002) is sampled for the parameters specified in the permit. Due to turbulent conditions from the discharge of Mossy Lake into the channel downstream, a small amount of defoamer may be added to prevent foam formation in Coffee Creek and the Ouachita River.

The mill wastewater and storm water falling in the process areas of the mill are collected in various sewers in the mill and flow by gravity to the treatment system. In addition to the normal process and nonprocess wastewaters collected, the mill may discharge wastewaters resulting from essential maintenance, regularly scheduled maintenance, during startup and shutdown, and

from incidental spills and releases (whether anticipated or unanticipated) from anywhere in the permitted facility. These wastewaters are amenable to treatment as provided in the treatment system, and will not impact effluent limitations. Sanitary wastewater in the mill complex is also treated in a number of septic tanks or aerobic treatment units. These are discharged into the various mill sewers for additional treatment in the mill wastewater treatment system.

On-Site Landfill

GP transports wastes generated at Crossett Paper Operations to one of two active landfills, the East Landfill and the North Landfill. The East Landfill is permitted to operate as a Class 3N (Non-Commercial) landfill and accepts only construction debris. The North Landfill, which began operation on September 1998, is permitted as an industrial landfill to accept general waste from the three manufacturing entities that make up the GP Crossett Complex. Leachate associated with the North and East landfills is collected and conveyed to the GP Complex wastewater treatment plant where it is treated prior to discharging it to the Ouachita River. No municipal waste is disposed of in either landfill.

Miscellaneous Activities

Product Stewardship wastewaters associated with other GP chemical or building product facilities may be periodically shipped to the GP's Crossett complex for treatment in its wastewater treatment system. All waters received would be "characteristically like" the pollutants in the wastewater already being generated and treated at the GP complex. The current permit contains a condition that requires ADEQ approval prior to potential treatment.

Process Materials and Chemicals Georgia-Pacific LLC Crossett, Arkansas

Paper Mill Process materials

- Logs and chips
- Bark and Hog fuel
- Pulp/stock
- Black liquor
- White liquor
- Green liquor
- Green liquor dregs
- Lime mud
- Turpentine
- Soap/Tall oil
- Pulping Condensates
- Slaker grits
- Bolier ash

Plywood Plant Process Materials

Logs

- Bark/Hog Fuel
- Green wood chips/lumber/sawdust/shavings
- Boiler ash/slag

Chemical Plant Process Materials

- Crude tall oil and fractionates
- Formaldehyde, urea-formaldehyde concentrate
- Tall oil rosin size and esters
- Urea-formaldehyde, phenol-formaldehyde, and polyamide resins

Specific chemicals used at the Pulp and Paper mill

- sodium hydroxide
- sulfuric acid
- chlorine dioxide
- sodium chlorate
- methanol
- alum
- hydrogen peroxide
- sodium hydrosulfide
- salt cake (sodium sulfate)
- sodium thiosulfate
- sodium bisulfite
- phosphoric acid
- urea ammonia nitrate

(**Plywood**) potassium hydroxide

Process Materials and Chemicals Georgia-Pacific LLC Crossett, Arkansas

(Chemical)

adipic, formic, fumaric, and toluene sulfonic acids aliphatic amide antioxidants aqueous ammonia biphenyl, terphenyl, quaterphenyl and diphenyl oxides diethylenetriamine epichlorohydrin ethylene glycol gamma-aminopropyltriethoxysilane

glycerine lithium and ferrous iodides organic salts pentaerythritol phenol potassium hydroxide maleic anhydride sodium hypochlorite urea

General classes of chemicals used at the mill

- Polymers
- Retention aids
- Slimicides
- Emulsifiers
- Defoamers
- Sizing agents
- Lubricating oils and greases
- Fuels (e.g., gasoline, diesel, No.6 Fuel Oil, coal)
- Inks and dyes

Note:

This is not meant to be an all inclusive list of every chemical used at the mill. However, it does outline the primary chemicals used that may contribute to wastewater loads to the treatment system.

Biocide Certification

In accordance with the requirements of 40 CFR 430.24(d), I hereby certify that the Georgia-Pacific LLC facility, Crossett Paper Operations, does not utilize trichlorphenolic-containing or pentachlorophenolic-containing biocides in our process operations.

(tan) Signature inap

Date

VICE Title of Responsible Corporate Official

State State

All numbers are in millions of gallons per day (MGD)

*= Storm water collectively is 1.4 MGD

Storm Water Calculation Georgia-Pacific Crossett Paper Operations NPDES Permit No. AR0001210

Average annual precipitation for Crossett, AR	56.88 inches per year				
Site area drainage to the wastewater treatment system					
• P1/P2/Woodyard Sewer	183.4 acres				
• P3 Sewer	181.5 acres				
Runoff coefficient for overall site ¹	0.9				
Calculated runoff per year to wastewater treatment system					
P1/P2/Woodyard Sewer	255 MG				
• P3 Sewer	252 MG				
• Total	507 MG				

Calculated daily average contribution to wastewater treatment system 1.4 MGD

(Note: Above value used on page 1 of Form 2C)

19 A.

r. Se

¹ Runoff coefficient based on the midpoint of range for an industrial area (0.5 - 0.9) as outlined in *Applied Hydrology*, Chow et al., 1999, Second edition.

Total Mill Off-Machine Production

Total Mill Off-Machine Production

	2010)		2011		2012		2013		2014
	Total Off-Machin	e-Production	Total Off-	Machine-Production						
	Tons	TPD	Tons	TPD	Tons	TPD	Tons	TPD	Tons	TPD
Feb	52,674	2,110	59,198	2,365	58,750	2,235	58,565	2,216	45,106	1,783
Mar	61,555	2,206	62,759	2,308	61,510	2,164	64,238	2,215	51,566	1,837
Apr	62,712	2,243	65,445	2,348	58,569	2,086	61,875	2,169	53,089	1,845
May	65,000	2,291	54,268	2,317	47,510	2,032	50,580	2,245	41,442	1,797
Jun	48,261	2,302	62,927	2,350	61,066	2,224	61,582	2,248	52,709	1,847
lut	67,031	2,348	65,488	2,299	64,413	2,248	62,696	2,228	52,308	1,832
Aug	65,307	2,346	61,999	2,313	62,140	2,152	65,508	2,243	47,909	1,884
Sep	. 62,912	2,353	61,003	2,321	58,889	2,148	52,600	2,109	48,771	1,733
Oct	62,431	2,361	57,078	2,316	63,120	2,166	60,815	2,161	48,205	1,762
Nov	60,865	2,322	63,671	2,301	56,703	2,167	45,225	1,711	47,758	1,697
Dec	62,515	2,253	61,991	2,293	62,309	2,155	46,754	1,721	48,582	1,700
Average		- 2,285		- 2,321		- 2,162		2,115		1,793

教育

-

Unbleached Production for Chloroform and AOX Effluent Limitation Guidelines

Unbleached Pulp Production - Air Dried Short Ton

Tons Days TPD Tons Days TDD Tons Days TDD Tons Days Tons Days Tons Days TDD Tons Days TDD Tons Days Tons Days Tons Days TDD Tons Days Tons Days Tons	509 532 505 495 539 528 535 557 449 551 430 467 508	Line 2 13,128 11,547 14,955 14,132 10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475	Days TPD - Softwood 31 42 28 41 31 48 30 47 22.5 45 30 53 31 54 31 42 30 51 31 42 30 51 31 47 30 50 31 51 31 47 30 50 31 51 356.5 48 48
Jan 15,139 31 488 14,960 31 483 15,799 31 510 15,780 31 Feb 14,253 28 509 13,980 28 499 15,277 29 527 14,887 28 Mar 15,326 31 494 14,209 31 458 16,068 31 518 15,670 31 Apr 14,406 30 480 16,306 30 544 15,302 30 510 14,861 30 May 16,825 31 543 12,698 24 529 11,750 24 490 12,927 24 Jun 11,640 23 506 14,171 30 472 15,993 30 533 15,577 31 Aug 17,013 31 549 14,135 31 445 17,528 31 555 17,273 31 Sep 15,717 30 524 13,084 31 422 16,773 31 541 17,092 31	509 532 505 495 539 528 535 557 449 551 430 467 508 00 605 597 605 595	13,128 11,547 14,955 14,132 10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A	31 42 28 41 31 48 30 47 22.5 45 30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48
Feb 14,253 28 509 13,980 28 499 15,277 29 527 14,887 28 Mar 15,326 31 494 14,209 31 458 16,068 31 518 15,670 31 Apr 14,406 30 480 16,306 30 544 15,302 30 510 14,861 30 May 16,825 31 543 12,698 24 529 11,750 24 490 12,927 24 Jun 11,640 23 506 14,171 30 472 15,993 30 533 15,834 30 Jul 16,929 31 546 13,861 31 447 17,190 31 555 16,577 31 Sep 15,717 30 524 13,769 30 459 14,972 31 541 17,092 31 Nov 14,225 30 474 </th <th>532 505 495 539 528 557 449 551 430 467 508 00 565 597 605 595</th> <th>11,547 14,955 14,132 10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861</th> <th>28 41 31 48 30 47 22.5 45 30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48</th>	532 505 495 539 528 557 449 551 430 467 508 00 565 597 605 595	11,547 14,955 14,132 10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	28 41 31 48 30 47 22.5 45 30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48
Mar 15,326 31 494 14,209 31 458 16,068 31 518 15,670 31 Apr 14,406 30 480 16,306 30 544 15,302 30 510 14,861 30 May 16,825 31 543 12,698 24 529 11,750 24 490 12,927 24 Jun 11,640 23 506 14,171 30 472 15,993 30 533 15,834 30 Jul 16,929 31 546 13,861 31 447 17,190 31 555 16,577 31 Aug 17,013 31 508 13,064 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 505 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 18,471 31	505 495 539 528 557 449 551 430 467 508 00 00 565 597 605 595	14,955 14,132 10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	31 48 30 47 22.5 45 30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48
Apr 14,406 30 480 16,306 30 544 15,302 30 510 14,861 30 May 16,825 31 543 12,698 24 529 11,750 24 490 12,927 24 Jun 11,640 23 506 14,171 30 472 15,993 30 533 15,834 30 Jul 16,929 31 546 13,861 31 447 17,190 31 555 16,577 31 Aug 17,013 31 549 14,135 31 456 17,528 31 565 17,273 31 Sep 15,717 30 524 13,769 30 459 14,972 30 499 13,482 30 Oct 15,749 31 508 13,084 31 422 16,773 31 551 12,899 30 465 12,899 31 510 14,471 31 Dec 15,653 31 505 15,411 31	495 539 528 557 449 551 430 467 508 00 00 565 597 605 595	14,132 10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	30 47 22.5 45 30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48
May 16,825 31 543 12,698 24 529 11,750 24 490 12,927 24 Jun 11,640 23 506 14,171 30 472 15,993 30 533 15,834 30 Jul 16,929 31 546 13,861 31 447 17,190 31 555 16,577 31 Aug 17,013 31 549 14,135 31 456 17,528 31 565 17,273 31 Sep 15,717 30 524 13,769 30 459 14,972 30 499 13,482 30 Oct 15,749 31 508 13,084 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31	539 528 535 557 449 551 430 467 508 00 565 597 605 595	10,285 16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	22.5 45 30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48
Jun 11,640 23 506 14,171 30 472 15,993 30 533 15,834 30 Jul 16,929 31 546 13,861 31 447 17,190 31 555 16,577 31 Aug 17,013 31 549 14,135 31 456 17,528 31 565 17,273 31 Sep 15,717 30 524 13,769 30 459 14,972 30 499 13,482 30 Oct 15,749 31 508 13,084 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31	528 535 557 449 551 430 467 508 00 565 597 605 595	16,118 16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	30 53 31 54 31 42 30 51 31 47 30 50 31 51 356.5 48
Jul 16,929 31 546 13,861 31 447 17,190 31 555 16,577 31 Aug 17,013 31 549 14,135 31 456 17,528 31 565 17,273 31 Sep 15,717 30 524 13,769 30 459 14,972 30 499 13,482 30 Oct 15,749 31 508 13,084 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31	535 557 449 551 430 467 508 00 565 597 605 595	16,871 13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	31 54 31 42 30 51 31 47 30 50 31 51 356.5 48 - Hardwood
Aug 17,013 31 549 14,135 31 456 17,528 31 565 17,273 31 Sep 15,717 30 524 13,769 30 459 14,972 30 499 13,482 30 Oct 15,749 31 508 13,084 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 558 18,970 31 612 17,136 31 553 18,745 31	557 449 551 430 467 508 00 565 597 605 595	13,271 15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	31 42 30 51 31 47 30 50 31 51 356.5 48
Sep 15,717 30 524 13,769 30 459 14,972 30 499 13,482 30 Oct 15,749 31 508 13,084 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 435 19,074 31 612 17,136 31 553 18,753 31 Apr 12,799 28 457 </th <td>449 551 430 467 508 00 00 00 0 0 0 0 0 0</td> <td>15,522 14,675 15,158 15,813 171,475 Line 1A 14,861</td> <td>30 51 31 47 30 50 31 51 356.5 48 - Hardwood</td>	449 551 430 467 508 00 00 00 0 0 0 0 0 0	15,522 14,675 15,158 15,813 171,475 Line 1A 14,861	30 51 31 47 30 50 31 51 356.5 48 - Hardwood
Oct 15,749 31 508 13,084 31 422 16,773 31 541 17,092 31 Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 IB2,875 358 511 171,819 358 480 187,080 359 521 181,753 358 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Mar 17,313 31 558 <	551 430 467 508 00 565 597 605 595	14,675 15,158 15,813 171,475 Line 1A 14,861	31 47 30 50 31 51 356.5 48 - Hardwood
Nov 14,225 30 474 15,235 30 508 13,943 30 465 12,899 30 Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 182,875 358 511 171,819 358 480 187,080 359 521 181,753 358 Line 1A - Hardwood Line 1A - H	430 467 508 od 565 597 605 595	15,158 15,813 171,475 Line 1A 14,861	30 50 31 51 356.5 48 - Hardwood
Dec 15,653 31 505 15,411 31 497 16,485 31 532 14,471 31 I82,875 358 511 171,819 358 480 187,080 359 521 181,753 358 Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31 Feb 12,799 28 457 17,774 28 635 17,045 29 588 16,710 28 Mar 17,313 31 558 18,870 31 612 17,136 31 553 18,745 31 Apr 19,054 30 635 18,885 30 613 15,949 30 532 17,861 30 May 19,216 31 620 15,497 24 646 12,799 24 533 14,598 24 Jun 13,244 23 576 <	467 508 00 565 597 605 595	15,813 171,475 Line 1A 14,861	31 51 356.5 48 - Hardwood
182,875 358 511 171,819 358 480 187,080 359 521 181,753 358 Line 1A - Hardwood	508 565 597 605 595	171,475 Line 1A 14,861	356.5 48 - Hardwood
Line 1A - Hardwood Line 1A	565 597 605 595	Line 1A 14,861	- Hardwood
Jan13,4773143519,0743161518,1073158417,52631Feb12,7992845717,7742863517,0452958816,71028Mar17,3133155818,9703161217,1363155318,74531Apr19,0543063518,3853061315,9493053217,86130May19,2163162015,4972464612,7992453314,59824Jun13,2442357618,1533060516,5253055118,20130Jul19,4393162719,9183164317,5973156818,80831Aug18,4403159518,0183158117,9673158018,36631Sep17,5833058617,7973059316,8583056215,13630	565 597 605 595	14,861	the second s
Jan13,4773143519,0743161518,1073158417,52631Feb12,7992845717,7742863517,0452958816,71028Mar17,3133155818,9703161217,1363155318,74531Apr19,0543063518,3853061315,9493053217,86130May19,2163162015,4972464612,7992453314,59824Jun13,2442357618,1533060516,5253055118,20130Jul19,4393162719,9183164317,5973156818,80831Aug18,4403159518,0183158117,9673158018,36631Sep17,5833058617,7973059316,8583056215,13630	565 597 605 595	14,861	the second s
Feb12,7992845717,7742863517,0452958816,71028Mar17,3133155818,9703161217,1363155318,74531Apr19,0543063518,3853061315,9493053217,86130May19,2163162015,4972464612,7992453314,59824Jun13,2442357618,1533060516,5253055118,20130Jul19,4393162719,9183164317,5973156818,80831Aug18,4403159518,0183158117,9673158018,36631Sep17,5833058617,7973059316,8583056215,13630	597 605 595		31 47
Mar17,3133155818,9703161217,1363155318,74531Apr19,0543063518,3853061315,9493053217,86130May19,2163162015,4972464612,7992453314,59824Jun13,2442357618,1533060516,5253055118,20130Jul19,4393162719,9183164317,5973156818,80831Aug18,4403159518,0183158117,9673158018,36631Sep17,5833058617,7973059316,8583056215,13630	605 595	13,031	
Apr19,0543063518,3853061315,9493053217,86130May19,2163162015,4972464612,7992453314,59824Jun13,2442357618,1533060516,5253055118,20130Jul19,4393162719,9183164317,5973156818,80831Aug18,4403159518,0183158117,9673158018,36631Sep17,5833058617,7973059316,8583056215,13630	595		28 494
May 19,216 31 620 15,497 24 646 12,799 24 533 14,598 24 Jun 13,244 23 576 18,153 30 605 16,525 30 551 18,201 30 Jul 19,439 31 627 19,918 31 643 17,597 31 568 18,808 31 Aug 18,440 31 595 18,018 31 581 17,967 31 580 18,366 31 Sep 17,583 30 586 17,797 30 593 16,858 30 562 15,136 30		16,076	31 519
Jun13,2442357618,1533060516,5253055118,20130Jul19,4393162719,9183164317,5973156818,80831Aug18,4403159518,0183158117,9673158018,36631Sep17,5833058617,7973059316,8583056215,13630	608 I	15,569	30 519
Jul 19,439 31 627 19,918 31 643 17,597 31 568 18,808 31 Aug 18,440 31 595 18,018 31 581 17,967 31 580 18,366 31 Sep 17,583 30 586 17,797 30 593 16,858 30 562 15,136 30		11,289	22.5 502
Aug 18,440 31 595 18,018 31 581 17,967 31 580 18,366 31 Sep 17,583 30 586 17,797 30 593 16,858 30 562 15,136 30	607	15,184	30 500
Sep 17,583 30 586 17,797 30 593 16,858 30 562 15,136 30	607	14,412	31 465
	592	14,391	31 464
	505	14,789	30 493
	562	13,643	31 440
	443	13,784	30 459
	419	13,452	31 434
205,159 358 573 217,784 358 608 202,265 359 563 199,657 358	558	171,278	356.5 480
Line 1B - Hardwood	bd	Line 1B -	- Hardwood
Jan 13,477 31 435 19,074 31 615 18,107 31 584 17,526 31	565	14,861	31 479
Feb 12,799 28 457 17,774 28 635 17,045 29 588 16,710 28	597	13,831	28 494
Mar 17,313 31 558 18,970 31 612 17,136 31 553 18,745 31	605	16,076	31 519
Apr 19,054 30 635 18,385 30 613 15,949 30 532 17,861 30	595	15,569	30 519
May 19,216 31 620 15,497 24 646 12,799 24 533 14,598 24	608	11,289	22.5 502
Jun 13,244 23 576 18,153 30 605 16,525 30 551 18,201 30	607	15,184	30 506
Jul 19,439 31 627 19,918 31 643 17,597 31 568 18,808 31	607	14,412	31 465
Aug 18,440 31 595 18,018 31 581 17,967 31 580 18,366 31	592	14,391	31 464
Sep 17,583 30 586 17,797 30 593 16,858 30 562 15,136 30	505	14,789	30 493
Oct 17,998 31 581 17,136 31 553 18,338 31 592 17,435 31 Nov 18,105 30 604 18,933 30 631 16,418 30 547 13,277 30	562	13,643	31 440
	443	13,784	30 459
	419	13,452	31 434
205,159 358 573 217,784 358 608 202,265 359 563 199,657 358	558	171,278	356.5 480
Total Unbleached Production Total Unbleached Production Total Unbleached Production Total Unbleached Production	uction	Total Unblead	ched Production
Jan 42,092 31 1,358 53,108 31 1,713 52,013 31 1,678 50,831 31	1,640	42,849	31 1,382
Feb 39,851 28 1,423 49,527 28 1,769 49,367 29 1,702 48,306 28	1,725	39,208	28 1,400
	1,715	47,107	31 1,520
Mar 49,952 31 1,611 52,148 31 1,682 50,339 31 1,624 53,159 31	1,686	45,269	30 1,509
Mar 49,952 31 1,611 52,148 31 1,682 50,339 31 1,624 53,159 31 Apr 52,513 30 1,750 53,076 30 1,769 47,199 30 1,573 50,583 30		32,862	22.5 1,461
Mar 49,952 31 1,611 52,148 31 1,682 50,339 31 1,624 53,159 31 Apr 52,513 30 1,750 53,076 30 1,769 47,199 30 1,573 50,583 30 May 55,256 31 1,782 43,691 24 1,820 37,348 24 1,556 42,122 24	1,755	46,486	30 1,550
Mar 49,952 31 1,611 52,148 31 1,682 50,339 31 1,624 53,159 31 Apr 52,513 30 1,750 53,076 30 1,769 47,199 30 1,573 50,583 30 May 55,256 31 1,782 43,691 24 1,820 37,348 24 1,556 42,122 24 Jun 38,128 23 1,658 50,476 30 1,683 49,043 30 1,635 52,236 30	1,755 1,741	AE COE	31 1,474
Mar49,952311,61152,148311,68250,339311,62453,15931Apr52,513301,75053,076301,76947,199301,57350,58330May55,256311,78243,691241,82037,348241,55642,12224Jun38,128231,65850,476301,68349,043301,63552,23630Jul55,806311,80053,697311,73252,383311,69054,19231		45,695	21 1 25-
Mar49,952311,61152,148311,68250,339311,62453,15931Apr52,513301,75053,076301,76947,199301,57350,58330May55,256311,78243,691241,82037,348241,55642,12224Jun38,128231,65850,476301,68349,043301,63552,23630Jul55,806311,80053,697311,73252,383311,69054,19231Aug53,893311,73850,170311,61853,462311,72554,00531	1,741	42,052	31 1,357
Mar49,952311,61152,148311,68250,339311,62453,15931Apr52,513301,75053,076301,76947,199301,57350,58330May55,256311,78243,691241,82037,348241,55642,12224Jun38,128231,65850,476301,68349,043301,63552,23630Jul55,806311,80053,697311,73252,383311,69054,19231Aug53,893311,73850,170311,61853,462311,72554,00531Sep50,883301,69649,362301,64548,687301,62343,75430	1,741 1,748 1,742 1,458	42,052 45,099	31 1,357 30 1,503
Mar49,952311,61152,148311,68250,339311,62453,15931Apr52,513301,75053,076301,76947,199301,57350,58330May55,256311,78243,691241,82037,348241,55642,12224Jun38,128231,65850,476301,68349,043301,63552,23630Jul55,806311,80053,697311,73252,383311,69054,19231Aug53,893311,73850,170311,61853,462311,72554,00531Sep50,883301,69649,362301,64548,687301,62343,75430Oct51,744311,66947,356311,52853,449311,72451,96131	1,741 1,748 1,742 1,458 1,676	42,052 45,099 41,960	30 1,503 31 1,354
Mar49,952311,61152,148311,68250,339311,62453,15931Apr52,513301,75053,076301,76947,199301,57350,58330May55,256311,78243,691241,82037,348241,55642,12224Jun38,128231,65850,476301,68349,043301,63552,23630Jul55,806311,80053,697311,73252,383311,69054,19231Aug53,893311,73850,170311,61853,462311,72554,00531Sep50,883301,69649,362301,64548,687301,62343,75430Oct51,744311,66947,356311,52853,449311,72451,96131Nov50,435301,68153,100301,77046,778301,55939,45230	1,741 1,748 1,742 1,458 1,676 1,315	42,052 45,099 41,960 42,726	301,503311,354301,424
Mar49,952311,61152,148311,68250,339311,62453,15931Apr52,513301,75053,076301,76947,199301,57350,58330May55,256311,78243,691241,82037,348241,55642,12224Jun38,128231,65850,476301,68349,043301,63552,23630Jul55,806311,80053,697311,73252,383311,69054,19231Aug53,893311,73850,170311,61853,462311,72554,00531Sep50,883301,69649,362301,64548,687301,62343,75430Oct51,744311,66947,356311,52853,449311,72451,96131	1,741 1,748 1,742 1,458 1,676 1,315 1,305	42,052 45,099 41,960 42,726 42,717	30 1,50331 1,354

For Chloroform:

Highest 12 month period for Line 2	(July 2012-June 2013)	522 TPD
Highest 12 month period for Line 1A	(August 2010-July 2011)	611 TPD
Highest 12 month period for Line 1B	(August 2010-July 2011)	611 TPD

For AOX:

Total of highest Consecutive 12 months for all bleach lines: 1,744 TPD

Chloroform Analysis

Internal Outfall 102

Date		
1/13/2013	Loading (lb/d)	0.7867
	Concentration (mg/L)	0.0184
	(
3/3/2013	Loading (lb/d)	0.5722
	Concentration (mg/L)	0.0146
5/6/2013	Loading (lb/d)	1.1135
	Concentration (mg/L)	0.0248
7/7/2013	Loading (lb/d)	1.5018
	Concentration (mg/L)	0.0352
0/1/2012	Leading (lb /d)	0.7447
9/1/2013	Loading (lb/d) Concentration (mg/L)	0.7447
	Concentration (mg/L)	0.0179
11/3/2013	Loading (lb/d)	0.4178
1110/2010	Concentration (mg/L)	0.0102
	concontraction (mg/L)	0.0102
1/25/2014	Loading (lb/d)	0.9901
	Concentration (mg/L)	0.0274
3/16/2014	Loading (lb/d)	1.3209
	Concentration (mg/L)	0.0312
5/26/2014	Loading (lb/d)	1.1009
	Concentration (mg/L)	0.0231
7/20/2014	Looding (Ib (d)	1 0701
//20/2014	Loading (lb/d) Concentration (mg/L)	1.2764 0.0284
	Concentration (mg/L)	0.0284
9/28/2014	Loading (lb/d)	1.0014
0/20/2014	Concentration (mg/L)	0.0233
	Concentration (mg/L)	0.0200
11/2/2014	Loading (lb/d)	0.7538
	Concentration (mg/L)	0.0184
	,	
1/11/2015	Loading (lb/d)	0.9117
	Concentration (mg/L)	0.0216

3/1/2015 Loading (lb/d) Concentration (mg/L)

0.5092 lbs/d 4.78 lbs/d

10.7%

Internal Outfall 101

Date		
1/13/2013	Loading (lb/d)	0.5200
	Concentration (mg/L)	0.0228
3/3/2013	Loading (lb/d)	0.5347
	Concentration (mg/L)	0.0237
5/6/2013	Loading (lb/d)	0.8194
	Concentration (mg/L)	0.0330
7/7/2013	Loading (lb/d)	0.5912
	Concentration (mg/L)	0.0205
9/1/2013	Loading (lb/d)	0.4632
	Concentration (mg/L)	0.0194
11/3/2013	Loading (lb/d)	0.3417
	Concentration (mg/L)	0.0144
1/25/2014	Loading (lb/d)	0.4380
ILOIL014	Concentration (mg/L)	0.0192
3/16/2014	Loading (lb/d)	0.4753
	Concentration (mg/L)	0.0207
5/26/2014	Loading (lb/d)	0.6106
0/20/2014	Concentration (mg/L)	0.0250
	(0.0200
7/20/2014	Loading (lb/d)	0.8355
	Concentration (mg/L)	0.0348
0/28/2014	Loading (lb/d)	0.4200
5/20/2014	Concentration (mg/L)	0.4308
	concentration (mg/L)	0.0100
11/2/2014	Loading (lb/d)	0.3578
	Concentration (mg/L)	0.0144
1/11/2045	Looding (lb/d)	0.0000
	Loading (lb/d) Concentration (mg/L)	0.3680
	Concentration (mg/L)	0.0151
3/1/2015	Loading (lb/d)	0.3419
	Concentration (mg/L)	0.0154

Average Loading Permit Limit

ercent of Permit Limit

0.9511 lbs/d	1.5013 lbs/d
4.78 lbs/d	4.81 lbs/d
19.9%	31.2%

0.8230

0.0183

Internal Outfall 103

Concentration (mg/L)

1.2777

0.0381

1.0070

0.0285

1.3802

0.0390

1.0182

0.0213

1.4373

0.0392

2.0688

0.0540

1.5860

0.0413

1.3730

0.0397

1.7370

0.0466

1.8390

0.0518

1.6813

0.0467

1.5004

0.0411

1.3196

0.0425

1.7921

0.0492

Date

1/13/2013 Loading (lb/d)

3/3/2013 Loading (Ib/d)

5/6/2013 Loading (lb/d)

7/7/2013 Loading (lb/d)

9/1/2013 Loading (lb/d)

11/3/2013 Loading (lb/d)

1/25/2014 Loading (lb/d)

3/16/2014 Loading (lb/d)

5/26/2014 Loading (lb/d)

7/20/2014 Loading (lb/d)

9/28/2014 Loading (lb/d)

11/2/2014 Loading (lb/d)

1/11/2015 Loading (lb/d)

3/1/2015 Loading (lb/d)

,

,

.

.

이었다. 이 사람은 이 사람은 이 이 사람은 이 이 사람은 것이 사람은 것이 있다. 것이 아이지는 것이 아이지는 것이 이 사람은 것이 가지만 것이 있다. 것이 아이지는 것이 가지는 것이 가지 않는 같은 것이 아이지 않는 것이 아이지 않는 것은 것이 아이지 않는 것이 아이지